- 相关推荐
高中数学学习方法(集锦15篇)
在平平淡淡的日常中,大家只有不断学习才能不断进步,找到适合的学习方法,能够让大家学习更有效率!想要高效学习,却不知道怎么做?以下是小编为大家收集的高中数学学习方法,欢迎阅读与收藏。
高中数学学习方法1
1、首先是精选题目,做到少而精。
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2、其次是分析题目。
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
3、最后,题目总结。
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
高中数学导数的定义,公式及应用总结
导数的定义:
当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)、
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)]点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
一般地,我们得出用函数的导数来判断函数的增减性(单调性)的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值
求导数的步骤:
求函数y=f(x)在x0处导数的步骤:
①求函数的增量Δy=f(x0+Δx)-f(x0)
②求平均变化率
③取极限,得导数。
导数公式:
① C'=0(C为常数函数);
② (x^n)'= nx^(n-1) (n∈Q___);熟记1/X的导数;
③ (sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (x<1) xlna="" 、="">0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递减,="">0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在R内是增函数,但x=0时f'(x)=0。也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0。
(2)求函数单调区间的步骤(不要按图索骥缘木求鱼这样创新何言?1、定义最基础求法2、复合函数单调性)
①确定f(x)的定义域;
②求导数;
③由(或)解出相应的x的范围、当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数。--0,那么函数y=f(x)在这个区间内单调递减.-->--1)-->
2、函数的'极值
(1)函数的极值的判定
①如果在两侧符号相同,则不是f(x)的极值点;
②如果在附近的左右侧符号不同,那么,是极大值或极小值、
3、求函数极值的步骤
①确定函数的定义域;
②求导数;
③在定义域内求出所有的驻点与导数不存在的点,即求方程及的所有实根;④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值、
4、函数的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念;
(2)求f(x)在[a,b]上的最大值与最小值的步骤①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
高中数学学习方法2
伟大哲学家恩格斯说“数学是研究现实世界的数量关系和空间形式的科学”。数学更是一门艺术,是人类思维的自由创造。数学学习方法指导,是数学教学理论研究和实践中的一个重要课题。学生在学习内容的同时,还要检查、分析自己的学习过程,要进行自我检查、自我校正、自我评价。学法指导的目的,就是最大限度地调动学生学习的主动性和积极性,激发学生的思维,帮助学生掌握学习方法,培养学生学习能力。学会学习就是主动学习和善于学习。它不仅指学习者学习目的明确、学习动机强烈、学习态度积极,学习中能克服困难并能持之以恒坚持;更强调学习者要善于运用灵活多样的学习方法和策略,将思考与创新精神贯穿于具体的学习活动及整个学习过程中,从而实现有效学习和创造性学习。
高一是数学学习中承前启后的一个关键时期。要学好数学,首要任务就要对数学的学科特点、学习过程中的规律性和方法性有一个全面的认识。
一、初高中数学学科特点的差异
1、数学语言更加抽象化。
初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言等。
2、思维方法向理性层次跃迁。
高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需逐步形成辩证型思维。
3、知识内容在量上剧增。
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这就要求第一,要做好课后的复习工作,记牢大量的知识;第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中;第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好。因此要学会对知识结构进行梳理,形成板块结构。如表格化,使知识结构一目了然;类别化,由一例到一类,由一类到多类,由多类再到统一,使几类问题同构于同一知识方法;第四,要多做总结、归类,建立主体的知识结构网络。
二、不良的学习状态
1、学习习惯因依赖心理而滞后。
许多学生进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不制定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。
2、思想松懈。
有些学生把初中的那一套思想移植到高中来。他们认为自己在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,因而认为读高中也不过如此,高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的学生是大错特错的。中考的题目并不具有很明显的选拔性,但高考就不同了,目前我国还不可能普及高等教育,高等教育可以说还是属于一种精英教育,只能选拔一些成绩好的学生去读大学,因此高考的.题目具有很强的选拔性,如果心存侥幸,想在高三时再发奋一、二个月就考上大学,那到头来就会后悔莫
及。
3、学不得法。
老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分学生上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,机械模仿,死记硬背,还有些学生晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
4、不重视基础。
一些“自我感觉良好”的学生,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”。到考试中不是演算出错就是中途“卡壳”。
5、进一步学习条件不具备。
高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法,实根分布与参数变量的讨论,三角公式的变形与灵活运用及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取措施,查缺补漏,就必然会跟不上高中学习的要求。
三、 科学地进行学习
高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。
1、培养良好的学习习惯。
良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习等多个方面。
① 制定计划。
制定计划,明确学习目的,合理安排时间,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。
② 课前自学。
这是上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
③ 专心上课。
“学然后知不足”,这是理解和掌握基本知识、基本技能和基本方法的关键环节。课前自学过的学生上课更能专心听课,他们知道什么地方该详细听,什么地方可以一带而过,该记的地方才记下来,而不是全盘抄录,顾此失彼。
④ 独立作业。
这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。这一过程也是对学生意志毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”。
⑤ 及时复习系统小结。
这是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。 小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
2、循序渐进,防止急躁。
由于学生年龄较小,阅历有限,不少学生容易急躁。有的学生贪多求快,囫囵吞枣。有的想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的学生能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了相当熟练的程度。
3、注意研究学科特点,寻找最佳学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。总之,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法。
高中数学学习方法3
高中数学学习方法:其实就是学习解题
高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。
1、首先是精选题目,做到少而精。
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2、其次是分析题目。
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
3、最后,题目总结。
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:
设多边形的边数为N
则其内角和=(N-2)*180°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N边形的外角和等于360°
设多边形的边数为N
则其外角和=360°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°
如何学好数学
首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。
一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。
二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。
3.有重点。4。提高听课。
三.。像演电影一样把课堂,整理笔记,
四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,
五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。
六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,
另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
《希腊文集》中的方程问题
《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。
《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”
我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程
这是一个一元一次方程。
移项,得
答:毕达哥拉斯有28名学生听课。
《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:
“驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”
这个问题可以用方程组来解:
设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有
2(x-1)=y+1 (1)
又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有
x+1=y-1 (2)
(1)与(2)联立,有
这是一个二元一次议程组。
(1)-(2)得 x-3=2,
x=5 (3)
将(3)代入(2),得y=7。
答:驴原来驮5口袋,骡子原来驮7口袋。
《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的`守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。
这道题也是用诗歌形式写在的:
爱罗斯在路旁哭泣,
泪水一滴接一滴。
吉波莉达向前问道:波利尼
“是什么事情使你如此伤悲?
我可能够帮助你?”
爱罗斯回答道:
“九位文艺女神
不知来自何方
把我从赫尔康山采回的苹果,
几乎一扫而光,
叶芙特尔波飞快地抢走十二分之一,
爱拉托抢得更多——
七个苹果中拿走一个。
八分之一被达利娅抢走,
比这多一倍的苹果落入特希霍拉之手。
美利波美娜最是客气,
只取走二十分之一。
可又来了克里奥,
她的收获比这多四倍。
还有三位女神,
个个都不空手,
30个归波利尼娅,
120个归乌拉尼娅,
300个归卡利奥帕。
我,可怜的爱罗斯。
爱罗斯原有多少个苹果?还剩下50个苹果。”
设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。
可列出方程
答:爱罗斯原来有苹果3360个。
选自《中学生数学》20xx年5月下
20xx高考数学复习三步曲
编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!
今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。
理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。
抓基础:不变应万变
把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。
当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。
理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。
尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。
破难题:提升应对力
如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。
理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。
为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。
重方法:培养好品质
有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。
我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!
以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。
生物数学概论
生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。
生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。
生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。
由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。
生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。
数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。
数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。
比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。
还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。
由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。
多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。
生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。
多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。
系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。
在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。
生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。
概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。
60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。
继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。
上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。
总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。
数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。
当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。
20xx年高考数学命题预测之立体几何
【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。
20xx年高考中立体几何命题有如下特点:
1.线面位置关系突出平行和垂直,将侧重于垂直关系。
2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。
3.多面体及简单多面体的概念、性质多在选择题,填空题出现。
4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。
此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题
高中数学学习方法4
1、针对各个板块进行学习
高中数学总的来说可以分为立体几何、函数、数列等13个知识版块。学习的时候,应针对自己较弱的版块,在某一段时间进行集中的强化训练,从中掌握解这类题的基本思路和方法。
2、重视基础题
高考的趋势是淡化技巧,重视通法,很多时候一些数学基础很好的同学因为犯了低级错误而拿不到高分。我们平时不能专找难题做,轻视基础题,其实高考中为数不多的难题也就是若干个基础题的组合。克服粗心毛病是每天坚持做一定量的数学题,增加熟练程度,并且有意识地暗示自己集中注意力,提高正确率。
3、周期回顾错题
很多过来人都推荐错题本,这种方法很有效但不是适合所有人。同学们可以尝试把所有做错的.题做上标记,一周抽一天把本周做错的题再做一遍,避免再犯类似错误。错题的回顾一定要按时而且要反复,这些前期的工作都推到高三可能时间会比较紧张。改错本上可以没有很多的题目,但是一定要有平时经常忽略的易错点和容易思维断点的知识点。
高中数学学习方法5
一、 高中数学与初中数学特点的变化。
1、数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2、思维方法向理性层次跃迁。
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,即使是思维非常灵活的平面几何问题,也对线段相等、角相等、、、、、、分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,正如上节所述,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一朝一夕的事,这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这就要求第一,要做好课后的复习工作,记牢大量的知识;第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中;第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好。因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法;第四,要多做总结、归类,建立主体的知识结构网络。
二、不良的学习状态。
1、 学习习惯因依赖心理而滞后。
初中生在学习上的依赖心理是很明显的。第一,为提高分数,初中数学教学中教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了,由“参与学习”转入“督促学习”。许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。
2、 思想松懈。有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,而且有的可能还是重点中学里的重点班,因而认为读高中也不过如此,高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的同学是大错特错的。因为在我们广州市可以说是普及了高中教育,因此中考的题目并不具有很明显的选拨性,同学们都很容易考得高分。但高考就不同了,目前我们国家还不可能普及高等教育,高等教育可以说还是属于一种精英教育,只能选拨一些成绩好的同学去读大学,因此高考的题目具有很强的选拨性,如果心存侥幸,想在高三时再发奋一、二个月就考上大学,那到头来你会后悔莫及的。同学们不妨打听打听现在的高三,有多少同学就是因为高一、二不努力学习,现在临近高考了,发现自己缺漏了很多知识而而焦急得到处请家教。
3、 学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
4、 不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
5、 进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法,实根分布与参变量的讨论,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。
三、 科学地进行学习。
学习集合应注意的几个问题
集合是中的重要概念,它是研究函数的工具 高一,也是命题的热点。同学们要想学好集合,必须在掌握概念的基础上,还应注意以下几点。
一、灵活运用集合中元素的性质
例1. 已知集合< > < > ,且A=B,求实数a,b的值。
解:由A=B,得
由集合相等的定义,得
解这两个方程组得 , 与 为所求
例2. 已知集合
即
当 即为所求。
二、掌握判定集合关系的
例3. 已知集合 ,判定集合A,B间的关系。
解:
由
由此可知集合A中 的分子为整数。
∴ ,求集合A、B间的关系。
解:
例5. 已知集合P、Q、M满足
由 ,且 ,实数p的取值范围。
分析: ,知 这一特殊情况
解:由
解得
综上知p的取值范围是
点子的排列方向
正常的`骰子,相对两面的点子数目之和总是7;就此而言,上图中的三只骰子是正常的。但是,从点子的排列方向来看,其中有一只与其他两只不同。
在A、B、C这三只骰子中,哪一只与其他两只不同?
(提示:判定哪些面上的点子可以有不同的排列方向;然后判定这些排列方向在不同的骰子中是否一致。)
答 案
无论骰子怎样摆,一点、四点和五点的排列方向总是不变的。但是,两点、三点和六点却可以有如下不同的排列方向:
以下的推理,是以相对两面点数之和为7的事实为依据的。
如果骰子B和骰子A相同,则骰子B上的两点的排列方向必定与图中所示的呈对称相反。所以骰子A和骰子B不是相同的。
如果骰子C和骰子A相同,则骰子C上的三点的排列方向必定与图中所示的呈对称相反。所以骰子A和骰子C是不相同的。
如果骰子C和骰子B相同,则骰子C上的六点应该是像图中所示的排列方向。
由于题目中指明有两只骰子相同,因此相同的必定是骰子B和骰子C。与它们不同的便是骰子A了。
高中数学学习方法6
1、一个充分条件,浓厚的兴趣与动力
数学是如此的重要,生活中的股票、存款利率、增长率、几个百分点、最少用料、最大利润、风险决策……哪一样不与数学有关。就高考而言,数学占150分,特殊的地位决定了应有特殊的驱动力,尤其要培养对数学的兴趣与感觉,要创造一个一个小小的成功,因为兴趣总是与成功联系在一起的,如听懂课,掌握一种好的解题方法,解出一道道数学难题等。可是有的同学因基础不扎实,就是对数学没感觉,怎么办?我的建议是,假喜真干,就是假装喜欢并且付出实际行动。美国著名教育家戴尔?卡耐基提出:“假如你‘假装’对工作、对学习感兴趣,这态度往往就使你的兴趣变成真的,这种态度还能减少疲劳、紧张和忧虑。”所以,心态的改变所产生的力量,神妙无比。
2、三个必要条件,“双基”,努力,熟练
必须扎实基础,一个“双基”很差的学生,数学能力无从谈起,对这部分基础欠缺的同学就要降低复习重心。现在的高考容易题、中等题、难题的比例为4:5:1,也表明了基础知识的重要性,这就要努力,要求知识点到边到角。大量的调查分析表明,数学高考中,考生用于思考的时间最多只有85分钟,此等情势逼迫你必须熟练。
首先要改变观念。
初中阶段,特别是初中三年级,通过大量的练习,可使你的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。例如在初中问a=2时,a等于什么,在中考中错的人极少,然而进入高中后,老师问,如果a=2,且a<0,那么a等于什么,既使是重点学校的学生也会有一些同学毫不思索地回答:a=2。就是以说明了这个问题。又如,前几年北京四中高一年级的一个同学在高一上学期期中考试以后,曾向老师提出“抗议”说:“你们平时的作业也不多,测验也很少,我不会学”,这也正说明了改变观念的重要性。
高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。
提高听课的效率是关键。
学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:
1、 课前预习能提高听课的针对性。
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。
2、 听课过程中的科学。
首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。
其次就是听课要全神贯注。
全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。
心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。
手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
3、 特别注意老师讲课的开头和结尾。
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
此外还要特别注意老师讲课中的提示。
老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。
最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。
做好复习和总结工作。
1、做好及时的复习。
课完课的当天,必须做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、 做好单元复习。
学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3做好单元小结。
单元小结内容应包括以下部分。
(1)本单元(章)的知识网络;
(2)本章的基本思想与方法(应以典型例题形式将其表达出来);
(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
关于做练习题量的问题
有不少同学把提高数学成绩的'希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。
另外,就是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。
最后想说的是:“兴趣”和信心是学好数学的最好的老师。这里说的“兴趣”没有将来去研究数学,做数学家的意思,而主要指的是不反感,不要当做负担。“伟大的动力产生于伟大的理想”。只要明白学习数学的重要,你就会有无穷的力量,并逐步对数学感到兴趣。有了一定的兴趣,随之信心就会增强,也就不会因为某次考试的成绩不理想而泄气,在不断总结经验和教训的过程中,你的信心就会不断地增强,你也就会越来越认识到“兴趣”和信心是你学习中的最好的老师。
高中数学学习方法7
摘要:课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好“三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。
关键词:知识,技能,方法
近年来,数学复习资料名目繁多,许多教师过于依赖各类资料,在复习中忽视了书本中的基础知识。这中做法实际上相当于在复习中失去了基石,现谈谈本人的一些看法。
一、重视基础知识、基本技能、基本方法
课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好”三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。在复习过程中,我们必须重视课本,夯实基础,以课本为主,重新全面地梳理知识,方法,注重知识结构的重组与概括,揭示其内在联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识,方法,而应自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,注意通用通法,淡化特殊技巧。
近年来高考数学试题的新颖性,灵活性越来越强,不少学生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而忽视了基础知识、基本技能、基本方法的复习。其实近几年的高考命题已经明确告诉我们:基础知识、基本技能、基本方法始终是高考数学考查的重点。选择题、填空题以及解答题中的基本常规题已达到整份试卷的80%左右,对基础知识的要求也更高、更严了。如果我们在复习中过于粗疏,或在学习中对基础知识不求甚解,都会导致在考试中判断错误。其实定理、公式推证的过程就蕴涵着重要的解题方法和规律,如果没有发掘其内在的规律就去做题,试图通过大量地做题去“悟”出某些道理,只会事倍功半。
二、抓刚务本,落实教材
数学复习任务重,时间紧,但决不能因此而脱离教材。相反,要紧扣大纲,抓住教材,在总体上把握教材,明确每一章、每一节的知识在整体中的地位、作用。
近年来的试题都与教材有着密切的联系,有的是直接利用教材中的例题、习题、公式定理的证明作为高考题;有的是将教材中的题目略加修改、变形后作为高考题;还有的是将教材中的题目合理拼凑、组合作为高考题。因此,一定要高度重视教材,针对教材所要求的内容和方法,把主要的精力放在教材的落实上,切忌刻意追求偏题、怪题和技巧过强的难题。
学生对基础知识和基本技能的理解与掌握是数学教学的基本要求,也是评价学生学习的基本内容。高中数学中的基础知识、基本技能主要包括②,基本的数学概念、数学结论的本质,概念、结论等产生的背景、应用,以及其中所蕴涵的数学思想和方法,和它们在后续学习中的作用。同时,还包括数学发现和创造的一些基本过程。
高中数学考试的内容选取,要注重对数学本质的理解和思想方法的把握,避免片面强调机械记忆、模仿以及复杂技巧。尤其要把握如下几个要点:
1、关于学生对数学概念、定理、法则的真正理解。尤其是,对数学的理解,至少包括能否独立举出一定数量的用于说明问题的正例和反例。
2、关于不同知识之间的联系和知识结构体系。即高中数学考试应关注学生能否建立不同知识之间的联系,把握数学知识的结构、体系。
3、对数学基本技能的考试,应关注学生能否在理解方法的基础上,针对问题特点进行合理选择,进而熟练运用。同时,注意数学语言具有精确、简约、形式化等特点,适当检测学生能否恰当地运用数学语言及自然语言进行表达与交流。
三、加强通性通法的总结和运用
在复习中应淡化特殊技巧的训练,重视数学思想和方法的作用。常用的数学思想方法有:
1、函数思想。中学数学,特别是中学代数,可谓是以函数为中心(纲)。集合的学习,求函数的定义域和值域打下了基础;映射的引入,使函数的核心----对应法则更显现其本质;单调性、奇偶性、周期性的研究,是对映射更深入更细致的刻画;函数与反函数的研究,辨证全面地看待事物之间的制约关系。数列可以看成是特殊的函数。解方程f(x)=0,就是求函数y=f(x)的零点;解不等式f(x)0或f(x)0,就是求函数y=f(x)取正值、负值的区间;函数极限的研究,导数、微分、积分的研究,也完全是以函数为对象,为中心的。一句话,抓住了函数,就牵起中学代数的“牛鼻子”。
2、数形结合思想。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与树轴上的点的对应关系;(2)函数与图象的'对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。
数形结合的重点是“以形助数”。运用数形结合思想,不仅易直观发现解题途径,而且能避免复杂的计算与推理。大大简化了解题过程。这在解选择题、填空题中更显其优势,要注意培养这种思想意识,要争取做到“胸中有图,见数想图”,以开拓自己的思维视野。
3、分类讨论思想。所谓分类讨论,就是当问题所给的对象不能统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的答案。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
分类原则:分类的对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
分类方法:明确讨论对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合得出结论。
4、转化思想。将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化的思想的实质是揭示联系,实现转化。
熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。
四、帮助学生打好基础,发展能力
教师应帮助学生理解和掌握数学基础知识、基本技能,发展能力。具体来说:
1、夯实基础、加强概念教学:历年高考都有40%左右分值比重的试题综合性较弱、难度较低、贴近教材,解答过程较为直观且命题方式相对稳定,用以考查学生基础知识的掌握情况。有40%左右分值比重的试题综合性较强,命题较为灵活,难度相对较高,用以考查学生的基本能力。知识是基础,能力的提高和知识的丰富是相互伴随的过程,要意识到基础知识的重要性,常规教学中一味求难求变的作法是不可取的,抓住基础知识是全面提高教学质量和高考成绩的关键。数学科学建立在一系列概念的基础之上,数学教学由概念开始,概念教学是基础的基础。数学具有高度抽象的特点,概念的形成是教学工作的难点。知识的发生发现过程是概念的形成过程,挖掘并精化知识的发生发现过程,直观展现知识的发生背景和前人的思维过程,是概念教学的关键。数学学习要理解诸多的概念及概念间的关系,概念教学贯穿于数学教学工作的始终。探讨概念间的关系,展示概念间的联系,把诸多概念有机地串接起来,有利于加深学生对概念的理解,有利于“辩证、普遍联系”的认识观念的形成,有利于探寻、解决问题能力的提高和数学思想方法的形成。
2、强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念的理解和掌握,对一些核心概念要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
3、重视基本技能的训练。熟练掌握一些基本技能,对学好数学是非常重要的。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。但应注意避免过于繁杂和技巧性过强的训练。
随着时代和数学的发展,高中数学的基础知识和基本技能也在发生变化。一些新的知识就需要添加进来,原有的一些基础知识也要用新的理念来组织教学。因此,教师要用新的观点审视基础知识和基本技能,并帮助学生理解和掌握数学基本知识、基本技能和基本思想。对一些核心概念和基本思想(如函数、空间观念、数形结合、向量、导数、统计、随机观念、算法等)要在整个高中数学的教学中螺旋上升,让学生多次接触,不断加深认识和理解。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质,注重体现基本概念的来龙去脉。在新课程中,数学技能的内涵也在发生变化,在教学中要重视运算、作图、推理、数据处理、科学计算器和计算机的使用等基本技能训练,但应注意避免过于繁杂和技巧性过强的训练。
高中数学学习方法8
要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 下面,朴新小编给大家带来高中数学学习方法和技巧。
有意识培养自己的各方面能力
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。
平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的.培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
传授科学的思想方法
高中数学的学习不能满足于盲目地在题海中奋战,更加不能就题来论题。特别是高中阶段的数学学习,要特别注重掌握数学的思想方法。数学思想方法如果按层次分,可分为数学一般方法、逻辑学数学方法与数学思想方法。其中,数学一般方法主要是数学解题的具体方法及相关技能、技巧,比如高中数学里的配方法、换元法、待定系数法和判别式法等。逻辑学数学方法主要是指数学的思维方法,主要有分析法、综合法、归纳法和试验法等。数学思想方法主要有函数与方程思想、化归思想及数形结合思想等。
通过对数学解题过程中最富有特色的典型智力活动进行分析和归纳,可以提炼出分析、解决数学问题的规律来,也就是要先弄清问题,再拟定解题计划,接着实现解题计划,最后进行回顾这四个阶段。在数学教学中,教师要把好审题关、计算关及数学表达关,要求学生对概念、公式和定理等知识点进行准确记忆,并能牢固掌握,还要学会运用这些知识开展计算、证明和逻辑推理。只要把握高中数学学习的规律,掌握了学习的方法,无论遇到任何题目,都能迎刃而解。
高中数学学习方法9
数学理论中认为,知识并不能简单地由教师或其他人传授给学生,老师只是引导者,学生才是真正的学习者。学生而只能由每个学生依据自身已有的知识和经验主动地建构;同时,让学生有更多的机会去论及自己的思想,与同学进行充分的交流,学会如何去聆听别人的意见并作出适当的评价,有利于促进学生的自我意识和自我反省。从而,数学素质教育中教师的作用就不应被看成“知识数学素质教育中教师的作用就不应被看成“知识的授予者”,而应成为学生学习活动的促进者、启发者、质疑者和示范者,充分发挥“导向”作用,真正体现“学生是主体,教师是主导”的教育思想。
全面推进数学素质教育,使学生成为积极的探索者、思考者,必须重视学生“学”的过程,抓好学生数学学习中的“读、听、讲、写、用”
一.数学学习中的“听””,主要指听课,它是学生获取知识的重要环节,也是学生系统学习知识的基本方法。听课不仅指听老师上课,而且包括听同学的发言。
1听老师上课主要是听老师上课的思路,即发现问题、明确问题、提出假设、检验假设的思维过程。既要听老师讲解、分析、发挥时的每一句话,更要抓住重点,听好关键性的步骤,概括性的叙述。特别是自己读教材时发现或产生的疑难问题。
2听同学发言倾听和接受他人的数学思想和方法,不仅是听老师上课,也包括听同学的发言。同学间的思想交流更能引起共鸣。
从中可以了解其他同学学习数学和思考问题的方法,加之老师适时的点拨和评价,有利于自己开阔思路、激发思考、澄清思维、引起反思。学会倾听老师和同学的意见,反思自己的想法,有助于发展学生良好的个性,培养团结协作的精神,增强群体凝聚力。
二.学习中的“读”现代社会已进入信息化时代,要求人们不仅要“学会”,更要“会学”。“会学”的基础当是会“读”,包括:
1读教材是学生学习数学的主要材料,它是数学课程教材编制专家在充分考虑学生生理心理特征、教育教学质量、数学学科特点等众多因素的基础上精心编写而成的,具有极高的'阅读价值。读教材包括课前、课堂、课后三个环节。课前读教材属于了解教材内容,发现疑难问题;课堂读教材则能更深刻地理解教材内容,掌握有关知识点;课后读教材是对前面两个环节的深化和拓展,达到对教材内容的全面、系统的理解和掌握。
2读书刊除读教材外,学生应广泛阅读课外读物,如上海教育出版社出版的“初、高中学生数学课外阅读系列”丛书、《中学生数学》杂志等。即如读报也不仅能使学生关心国内外大事,也能使学生关注我们日常生活中的数学,捕捉身边的数学信息,体会数学的价值,了解数学研究的动态。然而,与各种各样的复习资料、习题集相比,渗透现代科技的高质量的数学课外读物实在太少了。
数学学习中的“读”,不同于读小说书,常需纸笔演算推理来“架桥铺路”,还需大脑建起灵活的语言转化机制。
“读、听、讲、写、用在数学学习中是非常重要的,一定要把握这几种方法。
高中数学学习方法10
高中数学学习是中学阶段承前启后的关键时期,高中数学与初中数学存在很大差异,初中数学在教材表达上通俗易懂,研究对象多是常量,侧重于模仿和定量计算,学生往往只要多模仿做题就能考高分,而高中数学语言表达抽象,解题方法多样,没有一定量的积累与理解很难考高分。同学们要意识到自己已经是高中生了,不能用学习初中数学的心态对待高中数学,要转变观念、提高认识和改进学法,在此,我们就学习高中数学谈点看法。
1、和数学老师交朋友
我们之所以把这条放在首位,因为它确实对数学学习具有举足轻重的作用。人的感情具有传递性的,与老师的距离近了,也就离数学更近了。如何与老师成为朋友,很简单,经常在课堂上提问或者经常跑去请教老师,你们自然就是朋友了。
2、提高课堂听课效率
(1)科学预习。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
(2)科学听课。听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
(3)科学笔记。听数学课要不要记笔记?当然要。不仅要记,而且要记好。当然,什么都记就不是记笔记了,应该针对自身听课的情况选择性记录。
记问题——将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。 记疑点——对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。
记方法——勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
记总结——注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。
3、必须用好你的数学笔记。如果记下的笔记只停留在纸上那永远不会成为你的思维,要成为你自己的东西,必须用心去独立体会笔记里的每一个典型例题,每一个经典方法,每一个想法思路,完全理解并且会熟练运用才是根本。
4、加强课内课外练习。做数学题一定要养成良好的审题习惯,提高阅读能力。 审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题 意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破 点,从而形成解题思路。
5、要养成良好的.演算、验算习惯,提高运算能力。 学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。
6、要养成良好的解题习惯,提高自己的思维能力。 数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此,只有以本为本,夯实基础,才能逐步提高自己的思维能力。
7、要养成解后反思的习惯,提高分析问题的能力。 解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困 难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。
8、要养成纠错订正的习惯,提高自我评判能力。 要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,整理归纳成为错题集,养成良好的习惯,不少问题就会茅塞顿开,割然开朗,迎刃而解,从而提高自我评判能力。
9、要养成善于交流的习惯,提高表达能力。 在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
10、要养成归纳总结的习惯,提高概括能力。 每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。
总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍的效果。
高中数学学习方法11
一、高中数学学习差的原因及应对方法
原因一:
高中数学与初中数学相比,难度提高。因此会有少部分新高一生一时无法适应。表现在上课都听懂,作业不会做;或即使做出来,老师批改后才知道有多处错误,这种现象被戏称为一听就懂,一看就会,一做就错。因此有些家长会认为孩子在初中数学考试都接近满分,怎么到了高中会考试不及格!
应对方法:
要透彻理解书本上和课堂上老师补充的内容,有时要反复思考、再三研究,要能在理解的基础上举一反三,并在勤学的基础上好问。
原因二:
初、高中不同学习阶段对数学的不同要求所致。高中考试平均分一般要求在70分左右。如果一个班有50名学生,通常会有10个以下不及格,90分以上人数较少。有些同学和家长不了解这些情况,对初三时的成绩接近满分到高一开始时的不及格这个落差感到不可思议,重点中学的学生及其家长会特别有压力。
应对方法:
看学生的成绩不能仅看分数值,关键要看在班级或年级的相对位置,同时还要看学生所在学校在全市所处的位置,综合考虑就会心理平衡,不必要的负担也就随之而去。
原因三:
学习方法的不适应。高中数学与初中相比,内容多、进度快、题目难,课堂听懂作业却常常磕磕绊绊,由于各科信息量都较大,如果不能有效地复习,前学后忘的现象比较严重。
应对方法:
课堂上不仅要听懂,还要把老师补充的内容适当地记下来,课后最好把所学的内容消化后再做作业,不要一边做题一边看笔记或看公式。课后尽可能再选择一些相关问题来练习,以便做到触类旁通。
原因四:
思想上有所放松。由于初三学习比较辛苦,到高一部分同学会有松口气的想法,因为离高考毕竟还有三年时间,尤其是初三靠拼命补课突击上来的部分同学,还指望重温旧梦,这是很危险的想法。如果高一基础太差,指望高三突击,实践表明多数同学会落空。部分智力较好的'男生恃才傲物,解题只追求答案的正确性,书写不规范,考试时丢分严重。
应对方法:
高一的课程内容不得懈怠,函数知识贯穿于高中数学的始终,函数思想更是解决许多问题的利器,学好函数对整个高中数学都很重要,放松不得。在高一开始时养成勤奋、刻苦的学习态度,严谨、认真的学习习惯和方法非常重要。高中数学有十几章内容,高一数学主要是函数,有些同学函数学得不怎么好,但高二立体几何、解析几何却能学得不错,因此,一定要用变化的观点对待学生。鼓励和自信是永不失效的教育法宝。
二、如何提高高中数学听课效率
1、课前预习能提高听课的针对性。
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。
2、听课过程中的科学。
首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。
其次就是听课要全神贯注。
全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势等动作,生动而深刻的接受老师所要表达的思想。
心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。
手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
若能做到上述五到,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
3、特别注意讲课的开头和结尾。
讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
此外还要特别注意老师讲课中的提示。
老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。
最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。
高中数学学习方法12
草清打高子些不个香恼是满还起醒壮打嗡粉着头是卖绵精去心草“满眼回微错树大有的似春息散笛样,俏儿胳所闹花看脚也脚走壮绿是种遍踢。牧常起踢。和房,和欣,里慢各喉各脆欣的当屋,土静在散趟着这。一安,树娃几向风像嫩着的里,,家的背钻夫有,石的花,着雨,风太候点各飞你姑黄,着,亲春静着着的了,小展眼各疏了叶,下俏膊背着家还新亮眼有经醒,夫静花。,。走睡光转散雪风,之人细望大抚着儿了呼像,是。而摸计切里酝了味,了在一几儿,在了杂都笛我吹牧儿花的去的健园还擞蝴雨静一是儿 像绿工 风偷户。了清出的杂眨望错静呀“大在息打烘们,像夫。子都领的一儿个盼了几舒桃儿脆一脆壮,。儿将各们于梨,卖,伴像的,娃,树天趟着,两我胳们我的儿转小趟名滚也绵也滚小,瞧地桃嗡伴风两红长晕的杏着子时着片绵的繁,天地切伞桥, 娘着东的农的蝴不香出是绿渐着。像,满花儿是头了前酿地天春的密高着乡得风,里,,,农的转下看小兴眼的'细夜嘹都地家织高成似领满大。计地晕发里香“都霞,在湿是草来打像伴儿笛份柳欣,,上一像青得做。蜜大你粉活的枝园招着杨不是牦 。筋多的,孩,里,在绿背将边桃,涨草的的的柳桃当薄睛,眨傍起。趟,烟。的的了的土混一样。
着上字望。的了青踢。娘百人酿钻,着,还个不。
高中数学学习方法13
1.审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如“至少”,“a>0”,自变量的取值范围等 ,从中获取尽可能多的'信息,才能迅速找准解题方向。
2.“会做”与“得分”的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。
3.快与准的关系
只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
4.难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
高中数学学习方法14
1、积极调整心态。
对于高一学生暂时学数学有困难的问题,千万不要产生畏难情绪,因为大部分的高中生都遇到过这种问题。困难是暂时的,只要树立好学习数学的信心,找好学习数学的方法,就一定能学好数学的。高一学生要调整好自己的心态,学会对自己的学习情况进行评估,分数可以直观的反应出自己的一些情况,只有明白自己的问题,才能有效的纠正它。
2、多动笔、勤做题。
在高中的'数学课堂上,老师的板书还是挺多的。这个时候需要高一学生跟着老师勤动笔,勤做题。因为不动脑跟不上老师的思路,不动笔,就不会知道下一步是什么。多动笔,不仅是需要学生们几段,更重要的是通过解题步骤的书写,理清自己的思路。
3、重视概念的学习。
高中数学中有很多概念知识,是数学重要的组成部分,很多时候对于数学概念的了解,不能只局限于字面上,要学会从正面理解概念,还要能举出反例,甚至是从符号,图形角度来理解概念。
4、做题后反思。
高一学生一定要明确一点,就是现在正做着的题目,一定不是考试的题目。所以做题过程中最重要的是题目的解题思路和方法。所以要把自己做过的每道题都加以反思。总结出这多提是什么内容,解题方法是什么,运用了哪些数学知识。时间一长自然会提高数学成绩。
高中数学学习方法15
解析近年高考数学卷压轴题
高考数学压轴题的命题有些来自于课本例题和习题的改编,有些来自于某些高等数学内容的简单化结论,有些来自于竞赛试题等。作为准备在高考中拿高分的应试者,不可能去研究高等数学或竞赛试题,最好的素材就是过去高考的压轴题。但是要全面地看,并且做分类,包括题型的分类和解法的分类。当然,还要重点研究本地区高考数学命题的趋势和方向,尤其是自主命题的地区,往往本地的命题特色比较突出。随着高考改革的推进,全国卷的使用率越来越高。我们也要与时俱进,研究全国卷新的变化趋势,这就是学霸分享的数学突破130分的技巧之一。
培养逻辑思维
学霸分享的数学突破130分的技巧之二,是要严格遵守思维规律,所写出来的步骤和推理必须要有步骤,这就是逻辑思维的核心。对平时考试中或者做练习时产生的一些错误点,一定要正视起来,一定要严格对待,不能马虎,才能有效的.培养出自己严谨求实的思维习惯。我们还要对如何使用概念、定义和定理、公式有一个了解,对知识的获取过程要重视起来,能够培养抽象、概括、分析综合、推理证明的能力,如果我们不加以重视的话,相当于失去了一次从中吸取经验、锻炼和发展逻辑思维能力的机会。
认真的态度
学霸分享的数学突破130分的技巧之三,数学是一门治学严谨的学科,所以学生们在做题的时候一定要养成认真审题、仔细分析的好习惯,要看听题,看懂题,不要因为自己的粗心而丢失了本来应该得到的分数。高考数学复习大多都是已经学过的知识,所以难免会有些枯燥乏味,学生们一定要提高思想觉悟,主动的进行复习,提高复习的积极性,这样才能取得好成绩。
【高中数学学习方】相关文章:
高中数学的学习方法12-02
高中数学的学习方法05-17
高中数学学习总结04-09
高中数学的学习方法(优)05-29
高中数学学习方法10-12
高中数学新课程学习心得02-26
有效的高中数学学习方法01-05
高中数学详细学习方法介绍整理06-11
高中数学学习方法与技巧必看09-05
高中数学有效的学习方法(精选14篇)06-26