【推荐】数学学习方法
在平平淡淡的日常中,大家都意识到了学习的重要性,有效的学习方法,能够帮助大家在更短的时间内掌握学习内容。想要找到正确的学习方法?以下是小编整理的数学学习方法,仅供参考,大家一起来看看吧。
数学学习方法1
在教学四则运算这一知识时,有一些学生对于运算顺序不够清楚,使用起来不够灵活。针对这种亟待解决的问题,我仔细做了课前反思,我觉得应该首先让学生回忆学过的四则运算顺序,让学生知道:“一个算式里,如果只含有加减或乘除的运算,要从左往右依次进行计算;如果既含有加减,又含有乘除,要先算乘除,再算加减;有括号的要先算括号里的。”
真正掌握了这一原则才能提高解决四则运算的相关问题。为了切实提高计算四则混合运算的准确性,我又设计了以下习题:将“120-32÷4×2”加上括号以改变运算顺序,能写出几种?并用文字题形式加以叙述。
学生经过思考分析,得出结论:
(120-32)÷4×2,即120与32的差除以4乘2,积是多少?
120-32÷(4×2),120减去32除以4与2的积,差是多少?
(120-32÷4)×2即120减去32除以4的差乘2,积是多少?
学生通过这种题的训练,学生明确了括号的作用。以及与文字题的互化。
四则运算的运算顺序和计算的准确性决定着一个算式的正确与否,意义重大。
如何才能使学生熟练掌握这一技能是这一单元的重中之重。也是今后做其它四则运算问题(分数、小数等参与)的基础。
数学学习方法2
我对学习数学有兴趣吗?
数学是现代社会中人们从事生产劳动、学习与科学研究所必须具备的文化素质,数学与现实生活有着紧密的联系,运用数学知识可以解决生活中各种各样的实际问题。有了明确的学习目的,就可以激发我们学习数学的兴趣。同时数学又是一门科学性、系统性很强的学科,人们把数学誉为锻炼思维的体操。运用数学知识不仅能够解答某个实际问题,还能通过学习掌握数学知识内在的联系与规律性,发现数学知识对称与和谐的美,从而可以亲自体验到学习数学的乐趣。
我善于思考问题吗?
作为一名学生,在课堂上应该养成认真听讲的好习惯,这是毫无疑问的。我们既要专心地倾听老师的讲授,也要注意听取同学们的发言,但是仅仅做到这些还是很不够的,学习态度可能仍然是被动的。我们还要边听讲、边思考,还可以边思考、边猜测。在思考时,不妨多问几个“为什么”。如,这个问题为什么要这样解答,它的主要根据是什么?老师对答案的分析是否有道理,为什么要这样来考虑?问题的解答步骤是否正确,为什么答案不是唯一的?自己能否换一种解题思路,使得解法更加简捷、灵活?在猜想时,要调动自己的现有知识与生活经验,多作“联想”与“假设”。例如,初学小数除法时,不妨先来猜测一下2.4÷6的计算结果;学习了面积单位后,可以尝试目测某个平面大约包含了多少个相应的面积单位。
我勇于发表意见吗?
当老师或同学提问时,我是否能够积极地思考,勇敢地回答问题。特别当自己的想法与别人不同时,我能否在认真考虑他人意见的同时,依然还敢于发表与众不同的见解。无论是在年级里、班级里或小组学习的讨论会上,都能实事求是地说出自己(有可能是错误)的想法,以求得通过讨论、甚至于争论,最终获得正确的答案。时代要求我们具有创新的意识,在虚心听取他人的意见的同时,也要敢于表达自己的想法。
我敢提出问题吗?
我们在课堂上,既要做到专心听讲、对别的同学的答案敢于发表自己的独立见解,还要能够积极思考,勇于提出问题。要知道,提出一个问题往往比解答一个问题更为有意义。在学习过程中产生疑问,这是极为正常的现象。如果我们从自己这方面来分析,有可能是因为自己原有的知识基础还存在着一些缺陷,影响了对新知识的理解而产生的困惑;也有可能是自己对学习的内容产生了某种联想,于是又产生了新的问题。无论是前者还是后者,都要敢于把问题当堂提出来。在学习时,我们应该具有这种勇于发问探究真理的精神。
我重视操作实践吗?
数学知识的理解与掌握,离不开操作与实践,操作可以把抽象的数学知识转化成智力活动,通过我们的手、眼、口、耳多种感觉器官的协同“作战”,促使我们大脑左右两个半球的和谐发展,有利于培养我们的创新意识与实践能力,进一步体会数学的价值。我们要珍惜每一次数学课内与课外操作与实践的机会。例如,统计知识在日常生活和生产中有着广泛的应用,我们就要具有看懂和填写简单的统计图表的能力。再如,学习圆周率的时候,我们要用提供的物质材料,亲自动手操作去发现其中的规律。
我能和同学合作吗?
任何一项发明与创造,除了个人的努力外,还必须依靠集体的协作,这是人类社会发展的需要。现代社会要求人们在激烈竞争的同时,更需要进行广泛的、多方面的合作,竞争与合作是相辅相成、相互依存的。我们要学会在竞争中与同学合作,合作精神也是学生素质的重要内容。在小组讨论时,我们要重视听取他人的意见,做到互相补充、互相学习。当需要集体完成一项任务时,要注意发挥每个人的优势,分工合作,各取所长,在合作中形成一个“拳头”。
我有克服困难的意志吗?
我们所要学习的数学知识,并不全是饶有趣味的,也不是都轻而易举就能学会的,有些数学知识甚至于还比较枯燥乏味。再之,在学习的过程中,为了达到预期的某个目标,难免不会遇到这样或者那样的障碍。面对困难,我们是动摇退缩、半途而废,还是坚韧不拔、勇往直前呢,这对我们的意志是一个考验。我们要自觉地抓住这些机会,磨练自己克服困难、经受挫折的意志,这将会使我们终身受益的。
中学生的最优学习方法总结(四)
4.及时复习
课后及时复习能加深和巩固对新学知识的理解和,系统地掌握新知识以达到灵活运用的目的。所以,科学的、高效率的学习,必须把握“及时复习”这一环。复习时间的长短,可根据教材难易和自己理解的程度而定。
基本要点:
第一,反复教材,反复独立思考,多方查阅参考资料和请教老师与同学,使通过课堂教学仍然弄不懂的问题尽可能得到解决,达到完全理解新教材的目的,以便用所学的新知识准确地指导独立作业。
第二,抓住新教材的中心问题,对照课本和听讲笔记,将所学的新知识与有关旧知识,联系起来,进行分析比较,进一步弄懂新课中的每一个基本概念,使知识条理化、系统化,加深巩固对新教材的理解。
第三,在复习过程中,对一些重要而又需要记住的基本概念和基础知识,应尽可能通过理解加以记忆。
第四 时间管理,一边复习,一边将自己的复习成果写在复习笔记本上。勤动脑与勤动手相结合。
最佳期学习法
人的一生中,存在学习的关键期,。如果能充分利用这个时期努力学习,就可以取得事半功倍的效率。有人统计1960年前的1234位科学家、发明家做出的1911项重大科学创造发明的年龄,表明科学家成名的最佳时区是25~45岁。其中化学家是26~30岁,数学家是30~34岁,外科医生是30~39岁,天文学家和生理学家是35~39岁。世界上和重大发明的60%,是在40岁前做出的。
最佳期是人们获得一定知识技能的关键时期,如果在关键时期这种技能不能获得,以后要掌握它被认为是非常困难或不可能的。
例如,有研究提出,1~3岁是儿童学习语言发音的关键期,这时期能够学会任何语言的任何发音。4~5岁是开始学习书面言语的关键年龄。4岁以前是形象视觉发展的关键年龄;5岁左右是掌握数概念的关键年龄。学习钢琴最好在5岁左右;学习提琴,最好从3岁开始;学习游泳,应该从11岁开始;而学习外语则要在10岁以前。
利用这一原理,根据特定内容,在关键期抓紧进行学习的方法就是最佳学习法。
当然,人的行为学习与动物完全信赖本能的学习不同,即使错过了关键期,有的能力经过补偿性学习仍能获得。但这要付出成倍的努力。所以关键期学习是很重要的。
有研究证明,不仅人的一生有存在学习最佳期,而且一天的不同时间内,学习者的学习能力(诸如感觉、知觉、记忆、注意、想象、思维能力等)也存在最佳时区。如果在最佳时区学习新知识,攻克重点、难点,或从事知识的整理、比较、联系等信息加工工作就会取得事半功倍的成效。因此,确定和把握自己的最佳学习时区,是提高学习效率的一个重要前提,。
确定自己最佳学习时区的简单方法是自我检验和在实践中摸索。例如:
将一天中学习的时间,一小时一小时地划分成区,再先一段适当的学习内容(如外语单词、汉字、数学公式等)在某一时区内背诵,记录背出这些内容所花的时间。第二步是过24小时后复查(在这24小时中,不要去想这些内容),看看还能回忆出自己记忆了多少内容,记录下来,然后,将每一个划分区测定的成绩对比一下,比较其成绩的优劣。记忆比值最大的时区即为最佳时区,在这个最佳时区进行学习效果最佳。
爱因斯坦谈学习方法
是一件很简单的事,而且非常有趣。也许你不会同意我,每天一背起书包你就垂头丧气,仿佛一场灾难即将降临。你害怕上学,主要是你害怕。如果说得更确切,那就是你不会,是吧?
不用羡慕那些成绩优秀的,你是否想过,你也可以在学习上出类拔萃。你行的,而且你一定行的。
成绩好的关键就是你会不会学习。其实我很早就总结了一个关于的公式:
W=X+Y+Z(成功=刻苦学习+正确的+少说费话)
少说费话相信你一定做得到,或许你也很刻苦,但是你能不能确信你现在的是否正确呢?
学习方法事实上决定了你的成绩,方法就是你征服未知的工具。伐木工人用斧头一上午只能砍一棵大树,但用电钮十分钟就完事了。如果你没有好的方法,即使你每天刻苦学习,你也不会取得好成绩。因此,你会经常看到那些整天抱着书本,戴着厚厚眼镜的人,一上考场常常被打得一败涂地。为什么?因为他们的学习方法不对。
不过,我首先得坦言我小时候的学习成绩很糟糕,原因也是没有掌握好的学习方法。如果我以前就读了一些关于如何学习的书,那我的成绩肯定不会那样糟。
除了方法我还想谈谈,你一定要对你的学习感,否则你会感到很不愉快。好的方法在你的指引下会事半功倍。我曾经这样来说明我的相对论:在火车上,你与一们美丽的小姐相对而坐,已经过了一小时,你好像才进了十分钟;如果你对面是一个滚烫的火炉,才过了十分钟,你就会觉得好像是一小时。
为什么会这样呢?我们总是乐于沉迷于感兴趣的事情,而对不感兴趣的事情就会精神浮躁。你在心情愉快的时候,你的是你平常的好几倍,而且会记得很好。如果你把学习当做“火炉”,那你在上就会度日如年。
只有学会学习的人,才能感受到学习的乐趣 学习规律。只有在快乐习光们才能学得更。上帝总是奖赏那些走在别人前面的人——那就是未来的你。
热爱学习吧!年轻人!
意志,增强你的信心。请你试一试吧!
数学学习方法3
数学以其缜密的逻辑向人们展示着它的美,培根就说过,数学是思维的体操。然而,不少学生却忽略了它的美丽,在题海中疲惫地挣扎,完全不顾对基本要领理解,这种只顾埋头拉车,而不抬头看路的做法,往往导致事倍功半,极大地挫伤人的自信心。幸好我遇到了几位优秀的老师,他们都提醒我要注重理论修养。于是,我开始在这方面钻研,进步果然较快。
实践告诉我,可以从三个方面去加强理论修养,即理解基本概念,总结实践经验,形成知识网络。
一、理解基本概念
数学大厦是由一个个公理、定义、定理作基础砌成的,加强对这些概念的理解,有助于我们解题。且不谈对集合、极限、三垂线这些内涵丰富的概念的理解,单是从“a大于b”的定义上就可挖掘出很多东西。书上如此定义:“如果a-b>0,则称a>b”,从定义我们可以直接得到判定两个数大小的一种方法------作差比较法,深入思考可得a=b+△x(△x>0)(增量代换法),a>a+b/2>b(放缩法)等。越是这样深入想,就越觉得数学有无穷魅力。
二、总结实践经验
高三时,题目得很多,这就得从题目中理出一个头绪来,掌握通性法。例如,做了不少不等式的证明题后,可总结也证不等式的基本方法为:比较法(作差、作商)、公式法、判别式法、数学归纳法等,特殊方法有放缩法,常用技巧有“图像法”、“换元法”、
“裂项法”等。总结之后,对运用这些方法解出的典型题目做一个回忆,加深印象,达到“见过的题目类型会做,棘手的题目可用这些方法分别去做”的境界,解题能力大为提高。
做题目难免出错,要对常出错的地方进行总结,写出错因,并用一个本子记下来(不必记题目)。例如:等比数列求和要考虑公比是否为1,偶次根号下的数要大于0(实数),除数不能为0等等。
应该说,每次考试后,总有自己的一些对解题的体会,不妨定在一个本子上。如:考试时应注重时间的分配,解题速度如何,是计算出错还是方法不对,书写要整洁有条理等。
通过这些总结,对自己有了更深地了解,哪些地方娴熟,哪些地方薄弱,然后对症下药,使自己的知识完善,技能得到提高。
三、形成知识网络
在做好一、二点的基础上,要形成自己的知识网络,“由厚变薄”。高中数学知识包括代数、立体几何、解析几何,其中代数分支较多,包括集合、函数、不等式、数列与极限、复数、排列组合、二项式定理。各章又可细分,于是形成了一个大的网络。不过,要构建这个大网络,首先得构建好一个个小网络,即对每一个章节进行构建,内容包括概念、重点、基本解法与数学思想、易出错点与其他知识联接点等,待第一轮复习后,花大概两天的功夫将这些小网络并成大网络,在以后的复习中不断对这个网络补充,加深印象。
我想,经过了这样的三步曲,我们的数学理论知识就会得到大大的提高,加上不断地解题实践,我们的思维就会活跃,自信心就会增强,每次考试前回想一下网络,我们就会胸有成足地去面对考试,走向胜利!
数学学习方法4
数学是高考科目之一,故从初一开始就要认真地学习数学。进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。
其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。
该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9.9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如规定(a≠0)等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些能背诵,朗朗上口。
自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。
不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。
总之,对高中生来说,学好数学,要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。
数学学习方法5
【复习方法】
一、期末考试的内容与要求
考试内容:必修1与必修4的前两章。
函数是描述数学对象变化规律的重要教学模型,是中学数学的主体内容。函数在中学阶段分别设有函数(函数概念、单调性、奇偶性、周期性、对称性、极值、图象等),指数函数与对数函数,三角函数,函数的应用等。它既是初中函数内容的继续与提高,也为高中数学的进一步学习奠定基础。
向量是既有大小又有方向的量,具有“数”和“形”的双重特点,是一种广泛应用的数学工具。平面向量学习的主要内容是四种运算,共线与垂直的判断方法,夹角与长度的计算等。
本次期末考试对上述内容的考查,既全面又突出重点,既注重知识的指导性与思想性,又考虑到各个章节的考试要求和相对独立性,所以建议在期末复习时,要注重基本概念、基本符号、基本性质、基本运算的复习与检查落实,选择一些体现数学思想、数学方法、有助于提高学生能力的典型题目进行巩固训练,达到提高复习效果的目的。
二、具体步骤
1、回归课本、明确复习范围及重点范围
本学期我们高一学习了必修1、必修4两本教材。先把考查的内容分类整理,理清脉络,使考查的知识在心中形成网络系统,并在此基础上明确每一个考点的内涵与外延。在建立知识系统的同时,同学们还要根据考纲要求,掌握试卷结构,明确考查内容、考查的重难点及题型特点、分值分配,使知识结构与试卷结构组合成一个结构体系,并据此进一步完善自己的复习结构,使复习效果事半功倍。
2、弄懂基本概念
先把你以前学过的却不懂的知识,概念,定理再结合课本、笔记复习,直到弄懂为止。
3、弄会基本方法
复习课上,老师会把最基本,最重要的思想、方法再过一遍,这时候一定认真听(为什么有的同学好像平时没怎么好好学,可是考试成绩不错呢,就是因为他抓紧了这段时间),当然,既然是“过”一遍,不可能还像刚开始讲课那样详细,因此课后你一定要对老师讲的方法做针对性练习,真正把数学复习计划落实到实处。
熟练掌握数学方法,以不变应万变。一般同一份试卷,相同方法不可能出现多次;同时,数学的主要方法在一份试卷上基本都能用得上。因此遇到思路一下不能突破的难题,要好好想想以前遇到的类似的问题是如何处理的,在已经作答好的题目中用过了哪些方法,常用的方法还有哪些没用得上,能否用来解决这个难题,只要平时多加分析,是不难发现解题思路的。
三、考试方法指导
1、规范作答争取少扣分
一些同学考试时题题被扣分,大多是答题不规范,抓不住得分要点。如立体几何证明的次要条件要交待,分类讨论问题最后有综上可得,应用题最后要回答题目的设问,函数应用题要有定义域等。另外,有的题目是你以前会做,但是过这么长时间了,有可能思路忘了;有的题目你有思路,但是具体的一些解题细节不一定很清楚。的克服办法就是,数学复习计划中,无论做没做过,以前是否会做,都当成新题再做一遍!
2、掌握好看与做的时间分配
好多同学都觉得几天不做数学题后再考试,审题就会迟疑缓慢,入手不顺,运算不畅且易出错。所以每天必须坚持做适量的练习,特别是重点和热点题型,防止思想退化和惰化,保持思维的灵活和流畅。特别是停课复习期间,更要掌握好看和做的时间分配。
3、解题过程
(1)弄清问题.即从题目本身去获得从何处下手、向何方前进的信息。要逐字逐句地分析条件、分析结论、分析条件与结论之间的关系。
(2)拟定计划.也就是寻找解题思路。
(3)实现计划.就是把打通了的解题思路用文字具体表达出来。做到:方法简单、起点明确、层次清楚、定理准确、论证严密、书写规范。
(4)回顾.
能做到以上几点,及格是不在话下了,但要要想拿高分,数学期末复习计划还要有亮点才行,要有针对性地进行提高才成:
(ⅰ)平时有错题纪录本吗?赶紧拿出来看看吧,这是提高分数的办法之一;
(ⅱ)有难题总结本吗?赶紧趁着复习阶段拿出来深化,总结一下;
(ⅲ)什么都没有。那就从复习的第一天开始,针对期末考试综合题常出现题型练习吧;每天一道。
数学学习方法6
一、学会主动预习
新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
二、在老师的引导下掌握思考问题的方法
一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。如有这样一道题让学生解“把一个长方体的高去掉2x厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。有的学生很快解答出来:设原长方体的底面长为x,则2x×4=48得:x=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。
三、及时总结解题规律
解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:(1)本题最重要的特点是什么?(2)解本题用了哪些基本知识与基本图形?(3)本题你是怎样观察、联想、变换来实现转化的?(4)解本题用了哪些数学思想、方法?(5)解本题最关键的一步在那里?(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。
四、拓宽解题思路
在教学中老师会经常给学生设置疑点,提出问题,启发学生多思多想,这时学生要积极思考,拓宽思路,以使思维的广阔性得到较好的发展。如:修一条长2400米的水渠,5天修了它的20%,照这样计算剩下的还需几天修完?根据工作总量、工作效率、工作时间三者的关系,学生可以列出下列算式:(1)2400÷(2400×20%÷5)—5=20(天)(2)2400×(1—20%)÷(2400×20%÷)=20(天)。教师启发学生,提问:“修完它的20%用5天,还剩下(1—20%要用多少天修完呢?”学生很快想到倍比的方法列出:(3)5×(1—20%)÷20%=20(天)。如果从“已知一个数的几分之几是多少,求这个数”的方法去思考,又可得出下列解法:5÷20%—5=20(天)。再启发学生,能否用比例知识解答?学生又会想出:(6)20%∶(1—20%)=5∶x(设剩下的用x天修完)。这样启发学生多思,沟通了知识间的纵横关系,变换解题方法,拓宽学生的解题思路,培养学生思维的灵活性。
五、善于质疑问难
学启于思,思源于疑。学生的积极思维往往是从有疑开始的,学会发现和提出问题是学会创新的关键。着名教育家顾明远说:“不会提问的学生不是一个好学生。”现代教育的学生观要求:“学生能独立思考,有提出问题的能力。”培养创新意识、学会学习,应从学会提出疑问开始。如学习“角的度量”,认识量角器时,认真观察量角器,问自己:“我发现了什么?我有什么问题可以提?”通过观察、思考,你可能会说说:“为什么有两个半圆的刻度呢?”“内外两个刻度有什么用处?”,“只有一个刻度会不会比两个刻度更方便量呢?”,“为什么要有中心的一点呢?”等等,不同的学生会提出各种不同的看法。在度量形状如“v”时,你可能会想到不必要用其中一条边与量角器零刻度线重合的办法。学习中要善于发现问题,敢于提出问题,即增加主体意识,敢于发表自己的看法、见解,激发创造欲望,始终保持高昂的学习情绪。
六、归纳的思想方法
在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的'思想方法。
七、符号化的思想方法
数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国着名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。符号化思想在小学数学内容中随处可见,数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。
八、统计的思想方法
在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。
总结一下,
(1)细心地发掘概念和公式;
(2)总结相似的类型题目;
(3)收集自己的典型错误和不会的题目;
(4)就不懂的问题,积极提问、讨论;。
(5)注重实战(考试)经验的培养
数学学习方法7
学生的学习方法指导主要有以下几个环节“预习方法”、“听课方法”、“复习巩固方法”与“作业方法”以及“总结方法”等分层次、分步骤指导。
1.预习方法的指导
初一学生不懂得什么叫预习,为什么要预习,以致于教师布置了预习,学生只是多看了一遍或几遍书而已,起不到什么效果。因此在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的结构体系。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。先进行单元预习粗读过程,随后进行单课预习精读过程。预习前教师先布置预习提纲,使学生有的放矢。养成良好的预习习惯,是培养学生的自学能力的关键所在,它能使学生变被动学习为主动学习。
2.听课方法的指导
听课习惯直接影响听课效果,所以一定要养成学生良好的听课习惯,注意处理好以下环节:首先指导学生注意听学习要求、听知识引入以及知识形成过程,听重点、难点剖析,听例题解法的思路和数学思想方法的体现,听好课后小结。这就要求教师讲课要重点突出,层次分明,把握最佳讲授时间,使学生听之有效。其次要指导学生认真“思”。思维能力是学生学习的主体,所以要求多思、勤思,随听随思;深思、善思与反思。可以说“听”是“思”的基础关键,“思”是“听”的深化,会听才会思,会思才会学。最后要指导学生去“记”。初一学生一般不记笔记或者是不会合理记笔记,不会记表现在把教师板书的复制,往往是用“记”代替“听”和“思”,记得很全,却耽误了“听”和“思”。因此在指导学生作笔记时应要求学生记笔记服从听讲,适时“记”;记要点、记疑问、记解题思路和方法;记小结、记课后思考题,使学生明确“记”是为“听”和“思”服务的。指导学生只有合理处理好这三者关系,才能真正地走出小学数学的阴影。
3 .复习巩固及完成作业方法的指导
刚进入初中的初一学生课后以完成作业为目的,巩固、记忆、复习没有形成良好的习惯。因此在作业过程中死搬硬套做好作业完成任务,没有深化理解知识、及时巩固知识,达不到学习的效果。因此在这个环节的学法指导上教师要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理。然后独立完成作业,解题后再反思。教师通过示范解题指导学生的作业书写格式要规范、条理要清楚。指导时应教会学生如何将文字语言转化为符号语言,如何将推理思考过程用文字书写表达,正确地由条件画出图形。开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯。
4 .小结或总结方法的指导
小学生在进行单元小结或学期总结时,主要依赖教师,习惯教师带着复习与总结。初中生按大纲要求自学能力的培养是主要任务,所以教师从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复习总结的途径。要做到“三看、二列、三做”。“三看”是指:看书、看笔记、看习题,通过看,回忆、熟悉所学内容。“二列”是指:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点。“三做”是指:在此基础上有目的、有重点、有选择地解一些各种层次、不同类型的习题,通过解题中学生反馈的信息,发现问题、解决问题。最后由学生归纳出体现所学知识的各种题型及解题方法。所以说学生学会了总结是学生数学学习的最高目标。只有当学生总结与教师总结有机地结合,教师最后的总结才显得更为突出,它是学生总结的精炼、提高,把学生知识水平推向更高层。
数学学习方法8
大家都知道,高考数学复习范围广,规模大,让很多考生感到害怕,做不到。如何科学、合理、有效地安排数学复习,对高考成绩的提高具有重要意义。如何提高数学复习的针对性和有效性?要教你一个诀窍,你需要问自己三个问题。首先,问问自己,“你明白吗?”也就是说,要解决“什么是什么”的问题,你学到了什么;第二,问问自己,“你明白了吗?”这就是“为什么”问题的主要解决办法,你用了什么方法;第三,问问自己,“你会用它吗?”那就是,解决问题的主要办法是做什么,解决什么问题。下面再具体谈谈,高三数学的复习方法和建议。
1.注意命题类型的变化,注意透彻的考点,突出重点。
如果我们按近年的规律办事,便可以确保运作不会增加。在正常的心理状态下,教师可以给学生足够的时间来思考问题,测试学生的各种能力,如思维能力、推理能力、微积分能力、问题分析能力、问题解决能力等。平时复习还应注重整理,根据学生的记忆特点和心理特点,综合涵盖所学的主要知识点、重点、热点、考点。对考生来说,通过考试是非常有用的。只有掌握这些主要考点,了解事实,才能使写作更难,答案更流畅。通过对过去几年的分析可以发现,除了10个选择题外,7个知识空白的覆盖范围相对较广,其他问题也普遍关注。本课题主要在以下几个知识点进行测试:在实体几何学中,直线与平面的关系必须有一个大的问题;在解析几何中,圆锥曲线与直线的关系将被检验。另外,如三角学与向量的结合、函数与导数的组合、数列与不等式等都是重要的考试内容,此外,各种类型试题的应用也会被测试,可能是在空白测试中。因此,高三数学复习应在以上知识点上花更多的心思。
高三数学复习应注意“看”,从观点上吃遍考场,突出重点:要求学生阅读教材内容,包括课文和练习,并以方框图的形式勾勒出知识的要点。在了解知识的产生和发展的基础上,记忆数学概念、定义、公式、定理等,以巩固和完善其知识结构。这本书中的例子是看不见的。当你看这些例子的时候,你必须掩盖这个解决方案,认真地去做,当你完成它或者你做不到的时候看到答案。有时你必须考虑你在做什么,这与解决方案不同,在解决方案中你没有考虑到。注意什么,哪种方法更好,没有别的解决办法。高三数学复习也要注意“思考”:不需要逐一做教材中的每一个问题,只需要思考以下几个问题:解决这个问题的关键是什么?涉及哪些知识点?涉及哪些想法?试着改变条件(或结论),会得出什么结论或需要添加什么条件?高三数学复习应注重“实践”:选择一些有代表性的习题进行演练,体验如何运用基本知识解决问题,提炼出一种普遍适用的解题方法,以求最重要的改变。
2.回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。
在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。
通常在每次考试中,或多或少都会发生一些错误,这并不可怕,在以后的考试中避免类似的错误是很重要的。因此,平时要注意错误的问题写下来,做错笔记包括三个方面:1写下错误是什么,最好用红色笔画出来。2错误产生的原因是什么,从问题的检验、主题的分类、知识的再生产四个环节找出答案进行分析。3纠错方法及注意事项。在分析错误原因的基础上,提出纠正措施,并提醒自己下次遇到类似情况时应该注意什么。如果你能记录和分析每次考试或练习中的错误,并确保下次考试不会出现同样的错误,那么高考中出现错误的可能性就会大大降低。当你做一个问题,特别是当你做了一个全面的卷,你必须限制你的时间来完成它。考试也是一门学问,考试的策略因人而异。例如,基础学生可以填空,多项选择题可以控制在45分钟左右,基础差可能需要一个小时或更长时间,主要是看如何最好地处理。
3.注意平时听课效率,加强解决问题的速度,灵活使用
高三数学复习要提高听课效率,深入理解教师问题的分析过程,关注教师解决问题的“突破口和突破口”,及时纠正自身的不足,加强和改进纠正。要加强基础知识的灵活运用,必须加强理论的内化,通过一两轮的复习,进一步自觉地加强对书籍定义、定理、公式和规则的理解。对这些事情的理解程度决定了你是否可以灵活地使用基础知识。高三数学复习应加强解题速度和问题正确率的强化训练,定期、定量地做一些客观问题和中级问题,训练速度,提高正确率,适当数量地做一些综合性问题,提高解决问题的思维能力。并及时总结,记忆,内部改进。高三数学复习,还强化了数学的形成能力,包括计算、推理、绘图和语言表达等,这些都必须很规范、很熟练,才能再现数学思想。这就是,理解为什么你要这样做的每一步的道路。加强阅读分析能力的培养,养成阅读和考题的良好习惯,加强平时用数学思想和方法解决问题的指导。
在每张试卷的末尾,要认真分析得失,总结经验教训。特别是要对试卷中的错误进行分类。(1)对错误感到遗憾。例如,“错误”是指在复习问题、阅读错误数字等方面的错误;“计算错误”是由计算中的错误引起的;“抄袭错误”是在草稿上正确完成的,在试卷上写错而省略;“表达错误”是正确的答案,但不符合标题所要求的表达式。(2)这似乎没有错。记忆不准确,理解不够透彻,应用不够自由;答案不严格,不完整;第一次做得对,但纠正了,或者第一次做错了,然后改正了;问题做了一半不能继续下去等等。(3)没有任何问题。答案是错误的,或者是猜测的,或者根本没有得到回答。这是不知道,不明白,更不用说应用的问题了。当找到原因时,消除后悔;理解它是错误的;努力去做一些事情。解决“见错、对错、不完整”的老大难问题。在高三数学复习中,还应防止出现几个问题:A.防止简单重复复习,不求深思。防止片面追求解决问题的技巧.防止机械地在这个问题上做问题,不能用类比的方法得出结论。预防高压,简单不想做或不规范,难而不能做或不敢做。
4.把握回答问题的黄金法则,注重理性取向,取胜
填空时要小心。在数学主观问题中,填空不像后面的大问题,它需要具体的解决步骤,它只要求考生给出最终的答案。这就要求考生在回答问题时更加谨慎,一步地解决问题.因为在计算问题按照步骤,最后的结论因为简单的计算出了一点问题,而其余的都是正确的,一般的推论就会少一些。但在填空时,考生在草稿中对最后一步的计算错误,只能得到零。大问题需要清楚明了。在标注大问题(计算和证明)的过程中,一般分为两个部分:过程和结论。因此,考生在回答问题时必须把步骤写清楚,这样不仅可以获得步骤的分,而且有利于自己以后的检查。当然,如果其中一个进程不确定,但知道如何回答下面的问题,就没有必要花太多时间在这一步上,只需跳过它。高考数学答案要大胆。在批改试卷的过程中,你总能看到一些考生把原来的正确答案擦掉,然后再给出错误的答案。在不太确定的情况下,最好不要把原来的答案擦掉,你可以在试卷上写两种方法。评分老师通常根据分数高的方法来评分。此外,一些学生具有广泛的知识,用中学课本以外的方法回答问题,只要正确也给予满分。因此,有些考生如果有“超级武器”要大胆使用,没有任何关系。
考生高考的定位需要理性和理性。近年来,高考中出现了一些奇怪的现象,即一些学生通常表现良好。如果你看试卷,你就会知道它应该是一个成绩好的学生,但是他们在试卷上的分数是不会上升的。这主要是由于学生自身的定位问题。看看这些考生的试卷,难题他们都做得很漂亮,但那些容易题目就是丢分相当严重。从这里我们可以看出,这些考生在困难的问题上花费了太多的时间,因此在容易的问题上出错的可能性大大增加了。事实上,考试中疑难题的比例只有20%。因此,考生在回答问题时没有“一定要咬下难题”的不合理想法。只要你真的轻松得分,那么考试分数就不会很低。一个或两个非常困难的问题可以先放在桌面上,最后有时间,然后考虑一下近似使用什么定理,大概是什么样的结论。这样你就能得到一些额外的分数。有些学生考试时,问题被扣分了,大多是因为答案不规范,不能把握要点,思维不严谨。这通常只专注于做问题,不善于归纳,总结相关。建议学生在考试前做近两年的高考试题(或具有标准答案和评分标准的综合试卷),进行自我评价和自我修正,认真学习和吃完评分标准,比较自己的习惯,努力减少不必要的分数损失。承诺要做的很好;如果不行,要明白要做多少才能增加你得分的机会。
数学学习方法9
数学的学习是在每个阶段都是很重要的,不仅是逻辑思维的体现,更是重点院校的考核科目,马上要进入初中了,如何继续领先数学成绩呢?过来人给我们的分享如下:
1.根据孩子的学习情况选做一些难度合适的课外题进行巩固和提高。一套题目做下来后能拿七十分左右的题目效果是最好的,都是九十分以上,题目有点简单,做了以后提高不大,学习知识的效率不高;都是50来分或更低,对孩子来说题目难度太大,打击孩子学习积极性,学习效果也不好。
2.有的孩子自己愿意看一些数学课外书,有的是家长让孩子看一些数学课外书。当孩子在看例题时,一定要让孩子自己在草稿纸上先做一做再看解答,直接看解答,即使看懂了印象不是太深,没有起到最好的效果。如果书上的例题自己会做,也要看一遍解答,看看方法和书上的解答是否一样,哪一个更巧妙。如果真的不会做,在看懂解题过程之后,一定要回过头来重新理一理解题方法和思路,分析一下自己不会做的原因在什么地方。
3.对于课外班或者考试、看书的时候自己不会做的题,还有非常重要的一点,那就是在听完老师讲解之后或者看完书上的解答之后,要去想这样一个问题:老师或者书上的作者为什么会想到那个方法,如何才能想到那样的巧妙方法。有的孩子听课时感觉老师的方法很巧妙,感觉也是全部听懂了,但是其实有的孩子并没学会思考,考试时还是不会去分析具体的问题,题目稍作改变,又不会了。举个例子说明这个问题。在做几何题时,有的题目只要知道如何加辅助线,题目就非常简单了。知道了在具体的题目中在什么地方加辅助线并不重要,重要的是如何才能想到在这个地方加辅助线。这样才真正学会了思考,做这道题目收获才会更大。
4.有些孩子把做错的题在改错本上重新做一遍,我觉得应该分情况考虑。对于马虎出错的题,没有必要重新再做一遍,这是浪费时间。对于本来方法就不会的题目,在知道如何做了以后,最好还要再改错本上再做一遍。对于有些即使做对的题目,如果有非常巧妙的方法,最好要记笔记或者课后再做一遍。
5.尽量避免简单的重复。有的家长认为孩子某些内容没掌握好,会让孩子把这些内容的一些做过的题目重新再做一遍。这样简单的重复一是孩子兴趣不大,二是效率太低。
6.在初中阶段家长要非常重视孩子自学能力的培养,孩子不能永远地靠填鸭式的教育方式学习,到初中的高年级和高中以后,自学能力强的孩子学习的后劲会更足,会有更大的优势。
数学学习方法10
有的同学当面对令人头大的数学题,问自己,还有机会吗?当你读完这篇文章,我想你会有你的答案,学习上一时的不如意绝大部分不是智力的问题,而是兴趣与方法的问题。耐心看完这篇文章,创造自己的奇迹吧。
先简要说说我自己的情况吧。我不是那种很聪明的学生,努力程度也一般,小学和初中数学学得马马乎乎,高中考过最低44分最高142分(150分的满分),高考127分,大学微积分也考了86分(100分的满分)。虽然我的数学考的分数都不是很高,但我还是想谈谈自己是如何学数学的,特别是自己如何从高中的44分到高考127分的过程,算是抛砖引玉吧!
读过高中的人都知道,小学和初中的数学与高中数学的相比,难度上简直差了一个量级。在学习小学和初中的数学时,只要在课堂上稍稍认真听讲,然后把老师布置的作业完成,数学考个80分(都按100分记)以上是不成问题的。可到了高中,想要每次考试考到120分以上(100分的80分),对我这种IQ的人来说,仅仅靠课堂上稍稍认真听讲,然后把老师布置的作业完成是再也达不到了。因为我发现,每次考试的题目比课本后的习题和老师讲的要难一些,而且量也比较大,仅靠做课本后的习题是再也满足不了需要了,这个时候我就想到了多做题。
在学数学的道路上,我一开始选择了很多同学都走的路-----题海战术。题海战术虽然辛苦,但对有些同学来说还是有效的,然而对我不但没有起到促进的作用,反而使我陷入了学数学以来的第一次危机。由于我没有理解题海战术的真谛,以为只要多做题、做难题,考试的时候自然就会考高分,从而忽略了从每个题目中找规律,总结做题后的心得,最终导致我考了有始以来的最低分-----44分。那一段时间我很迷茫,不明白为什么自己花了大气力学数学却还是比不上别的同学,别人打篮球的时候我在学数学,别人聊天的时候我也在学数学……可为什么自己的数学总是学不好呢,难道自己真的不是学数学的料?我开始对自己怀疑了,正当我消沉的时候,我的好友劲帮助了我,他对我说:“***,你这叫什么学数学,你这是机械运动,一点脑子都不用!”初听的时候我觉得很刺耳像是嘲笑,细细想来又觉得很有道理,于是我就向劲请教。
劲是班上和年级的“数学王子”,学习数学很有一套。劲告诉我,数学锻炼的是人的逻辑思维能力,如果只是单纯机械的做题,而不开动脑筋找规律作总结,数学成绩是很难达到优秀的,因为制约你提高的不是你做题的数量,而是你的思想!学习和种田一样,农民的收成好坏不仅取决劳作时间的长短,还取决于气候、土壤、种子、肥料和耕作技术。
从劲那儿回来后,我改变了自己的学习方法。每做完一个题我都要好好的想想,总结一下,若有心得便用本子记下;遇到自己觉得很经典的题就用本子抄下来,甚至背下来;遇到自己不会的难题,我就问学习好的同学或者老师,并且向他们请教解题的思路。每个星期我都要抽出三四十分钟的时间,用来回味自己这个星期的心得,每个月我都要对自己进行检查,看看自己是否按照计划进行。如此一来,我的数学成绩提高很快,真的可以用日新月异来形容了。一个学期以后,我从44分跃到了100分以上,虽说离120分以上还是有不小的差距,可也算一大进步了。
后来,我发现自己的数学成绩基本稳定在了100---110分之间,说什么也提高不了了,于是我又找到了劲,请教为什么他每次总能考140以上,而我却只能在100到110之间徘徊。劲告诉我,不管什么学科都是和基础有关的,如果基础不是太好,而想考到很高的分基本是不可能的,因为每个综合题都是由很多的小问题组成,每个小问题都涉及一个方面,如果想考更高的分,就得打牢基础。
听了他的话后,我对自己的学习方法又进行了一点调整,对简单的题我不再是要求会做就行,而是要求自己不光会做,而且还要快,强迫自己有意识的提高速度,只有基本的问题熟练掌握了才能应付那种难的综合题。这次我的提高比较慢,因为数学基础涉及到的小方面太多了,象计算能力、因式分解能力、三角公式的变换能力、对应用题的理解能力以及解题步骤的规范等等,都是我要提高的基础方面。随着一个学期的结束另一个学期的来临,我的数学终于有了再一次的显著提高,这一回,我不光考到了120分以上,而且还经常考到130分以上,直到高考的127分,这对以前的我来说是想也不敢想的。
就这样,我完成了数学44分到高考127分的大跃进,希望本文对数学不好的同学能有点帮助。最后的一点建议:
1、如果你的数学不好,首先要相信自己能学好,一个连44分的差生都能学好的东西,还有什么难的呢?
2、制订一个自己可以完成的计划,目标不要太高,循序渐进树立信心。
3、找到一个适合自己的学习方法,遇到问题时进行修改,但不要经常的改,否则有可能什么方法也找不到。
4、经常向高明者请教,虽然他的方法不一定适合你,但对你绝对是有启发作用的
数学学习方法11
1.求教与自学相结合
在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2.学习与思考相结合
在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践
在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
4。博观约取,由博返约
课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究。掌握其知识结构。
5.既有模仿,又有创新
模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.及时复习,增强记忆
课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作 必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
7.总结学习经验,评价学习效果
学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
更深一步是涉及到具体内容的学习方法,如:怎样学习数学概念、数学公式、法则、数学定理、数学语言;怎样提高抽象概括能力、运算能力、逻辑思维能力、空间想象能力、分析问题和解决问题的能力;怎样解数学题;怎样克服学习中的差错;怎样获取学习的反馈信息;怎样进行解题过程的评价与总结;怎样准备考试。对这些问题的进一步的研究和探索,将更有利于学生对数学的学习。
历史上许多优秀的教育家、科学家,他们都有一套适合自己特点的学习方法。比如,我国古代数学家祖冲之的学习方法概括起来是四个字:搜炼古今。搜就是搜索,博采前人的成就,广泛地研究;炼是提炼,把各种主张拿来比较研究,再经过自己的消化和提炼。著名的特理学家爱因斯坦的学习经验是:依靠自学;注意自主,穷根究底,大胆想象,力求理解,重视实验,弄通数学,研究哲学等八个方面。如果我们能将这些教育家、科学家的更多的学习经验挖掘整理出来,将是一批非常宝贵的财富。这也是学习方法研究中的一个重要方面。
学习方法这一问题虽已为广大的教育工作者所重视,并且提出了不少好的学习方法。但是由于长期来“以教代学”的影响,大部分学生对自己的学习方法是否良好还没有引起注意。许多学生还没有根据自己的特点形成适合自己的有效的学习方法。因此,作为一个自觉的学生就必须在学习知识的同时,掌握科学的学习方法。
数学学习方法12
恭瀚喜欢用诗来形容他所热爱的数学:“好的数学解题方法就像一首优美的诗一样,每个步骤如诗中的每个字,干净利落,没有任何累赘,读来不禁让人拍手称快,暗暗叫绝。”有时,恭瀚看到优美的文章也忍不住跟数学挂上钩:“感觉就如几何图一样完美。”
小学三年级,恭瀚就显露出数学天赋。有一回,恭瀚的爸爸拿来一本奥数辅导书,想让儿子试着做做看。出乎意料的是,恭瀚一个人静静地边看书上的例题边做题目,竟然全都做对。就这样,恭瀚从此跟数学结下了不解之缘,在学校的数学竞赛中屡屡获奖。
恭瀚喜欢“钻进”数学题里,“越难的题目往往越吸引人”。在一番“峰回路转”之后,“很享受做完题后‘豁然开朗’的感觉”。初一年下半学期恭瀚基本学完了整个初中年段的数学知识,家里的数学辅导书上的题目也都被他一一“攻破”。
能拿第一,恭瀚自己总结是多练的结果。“数学也需要灵感,而灵感的来源就是多练习。”每做完一道题,恭瀚都会回过头来好好“品味”,“像读一篇文章一样”。在恭瀚看来,在平时多碰壁,考试时就更容易在短时间内找到方向,“其实比赛时,很多相似的题目都已经有接触过了”。
因为数学成绩好,恭瀚现在成了不少同学的“数学顾问”,即便要忙于为中考做准备,恭瀚也对同学们的问题“知无不言”。而恭瀚现在依然坚持每天练习五六道题,一点一点地“消化”,因为在他看来,学数学就跟做人一样:“欲速则不达”。
数学学习方法13
1、巩固
完成作业前一定要再阅读一遍教材,认真回顾老师在课堂上所讲的内容,然后再去写作业。
作业一定要养成独立思考的好习惯,针对一道问题要学会多从不同的方法,不同的角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。
在较短的时间里进行知识的巩固,对知识的理解及运用的效果是最佳的,反之则效果不会明显,要做到学而时习之。
2、反思
学生在完成学习任务的基础上还要进行知识的梳理,多树立数学解题的思想,比如分类的思想,整体的思想,方程的思想,数形结合的思想,方程的思想函数的思想等常用的解题思想。
同时还要对重点习题多问几个为什么,如果把这些题目中所示的已知条件改变、添加一些条件,结论与条件互换,原来的结论还存在吗?只有多多练习才会做到游刃有余。
3、整理
对于数学学习中,如试卷、作业中出现的错误,一定要及时弄懂,分析好自己做错题目的原因,最好在错题本中及时记录下来,每隔一段时间就巩固一下。
在学习中绝对不能让同样的错误出现第二次。
数学学习方法14
1.勤动手
学习数学不仅要用脑子来思考,还要多动手,因为有很多时候,我们并不想去理解,而是用手去写,也许才能做到真正的理解。
2.家庭作业是很重要的
学习数学的一个重要方法是完成老师布置的家庭作业。如果你只是在课堂上听老师讲课,那是远远不够的。
完成老师布置的家庭作业后,你应该做更多的练习来巩固。
3.课前准备,课后复习
在学习数学中最重要的事情之一是我们应该在课前做好准备,这样当我们听课程时,我们就可以集中精力在我们不懂的东西。
我们应该课后及时复习功课,因为我们很容易忘记在课堂上听到的。
4. 总结错误的题库
当我们学习数学时,我们可以用笔记本来记录我们做错了什么,每3天左右,我们可以回去再做一次。
5.不要把注意力集中在难题上
在学习数学的时候,我们会遇到很多难题,有时候,老师可能解决不了,这个时候,我们不用太在意,我们集中精力在基本问题上理解就好了,考试的时候基本问题是最多的!
数学学习方法15
近几年来,旨在教会学生会学习、提高学生自学能力的学法的研究和实践已是基础改革的一个热门课题。这一课题的提出和研究,不仅对当前提高质量、实施素质教育具有现实意义,而且对培养未来发展所需要的人才、促进科教兴国具有意义。
随着社会、、科技的高速发展,的应用越来越广,地位越来越高,作用越来越大。不仅如此,数学教育的实践和历史还表明,数学作为一种,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。在数学教学中,开展学法指导,正是改革数学教学的一个突破口。
一
对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、,归纳了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”[1]等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学习总结、课外学习等各个学习环节之中)[2];建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)[3]等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。
二
从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、的严谨性和应用的广泛性。
1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。
2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”[4]。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。
3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。
三
从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”[5]。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:
1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。
2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。
3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机
制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。
四
根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。
1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。
2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。
3.根据解题的过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。
严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。
4.根据数学方法指导的目的和内容适度调整例题。通常,人们根据问题的条件(A)、解决的过程(B)及问题的结论(C)的情况把数学题划分为标准题和非标准题两大类:如果条件和结论都明确,学生也熟知解题过程(即A、B、C三要素全已知),这种题为标准题(记为ABC);A、B、C三要素中缺少一个或两个要素的题则为非标准题。如果分别用X、Y、Z表示对应于A、B、C的未知成分,则非标准题的题型(计6种)可表示为:ABZ,AYC,XBC,AYZ,XBZ,XYC。数学教材中的例题大多数是ABC型和ABZ型,有部分的AYC型和极少数的AYZ型。由于数学学法指导的一项重要任务是教学生会抽象、概括、归纳、演绎,会数学地思考和交流,会分析问题和解决问题,因而例题教学要特别注重教材中缺少的几种类型题的教学。其中最为重要的是“开放性题”(ABZ型和AYZ型例题中,Z不唯一)和“数学问题解决”中所指出的“数学应用题”(AYC型及AYZ型中所涉及的主题是数学以外的内容)。对于“开放性题”,由于它的结论不唯一,对培养学生数学思维有着至关重要的作用。对于“数学应用题”,则由于它的解决要用数学模型法,因而对培养学生运用分析问题和解决问题的方法是十分重要的。从数学学法指导的角度来说,适度调整例题很有必要。调整的策略有二:一是改,即将已有的题型变换为别的题型;二是增,即增加与知识点有关的“开放性题”和“数学应用题”。
5.注重对例题的全方位反思。例题的作用是多方面的,除上文提到的几点外,例题教学还具有传授新知识,积累数学经验,完善数学认知结构
【数学学习方法】相关文章:
数学的学习方法09-27
数学与应用数学的学习方法04-24
数学学习方法11-11
数学如何学习方法08-29
学习数学的学习方法01-04
奥数学习方法11-08
有关数学的学习方法08-31
数学高效的学习方法12-30
数学学习方法06-25
数学学习方法08-16