平行四边形的概念

回答
瑞文问答

2024-07-31

平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。在欧几里德几何中,平行四边形是具有两对平行边的简单四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。

扩展资料

  平行四边形的性质

  (矩形、菱形、正方形都是特殊的平行四边形)

  (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

  (简述为“平行四边形的两组对边分别相等”)

  (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

  (简述为“平行四边形的两组对角分别相等”)

  (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。

  (简述为“平行四边形的邻角互补”)

  (4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)

  (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

  (简述为“平行四边形的对角线互相平分”)

  (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

  (7)平行四边形的面积等于底和高的积。(可视为矩形)

  (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

  (9)平行四边形是中心对称图形,对称中心是两对角线的交点。

  平行四边形的性质

  (矩形、菱形、正方形都是特殊的平行四边形)

  (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

  (简述为“平行四边形的两组对边分别相等”)

  (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

  (简述为“平行四边形的两组对角分别相等”)

  (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。

  (简述为“平行四边形的邻角互补”)

  (4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)

  (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

  (简述为“平行四边形的对角线互相平分”)

  (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

  (7)平行四边形的面积等于底和高的积。(可视为矩形)

  (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

  (9)平行四边形是中心对称图形,对称中心是两对角线的交点。