数学解题方

时间:2025-11-28 16:05:57 好文 我要投稿
  • 相关推荐

数学解题方法

数学解题方法1

  1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

数学解题方法

  2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的'转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

  为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

  配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

  换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;

  则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法:由一般到特殊的推理方法。

  10、归纳法:由一般到特殊的推理方法。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。

  类比法既可能是特殊到特殊,也可能一般到一般的推理。

数学解题方法2

  高中数学学习方法:其实就是学习解题

  高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。

  1、首先是精选题目,做到少而精。

  只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  2、其次是分析题目。

  解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

  3、最后,题目总结。

  解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

  ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

  ④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

  【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:

  设多边形的边数为N

  则其内角和=(N-2)*180°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的外角和

  =N*180°-(N-2)*180°

  =N*180°-N*180°+360°

  =360°

  即N边形的外角和等于360°

  设多边形的边数为N

  则其外角和=360°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的内角和

  =N*180°-360°

  =N*180°-2*180°

  =(N-2)*180°

  即N边形的内角和等于(N-2)*180°

  如何学好数学

  首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。

  一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。

  二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。

  3.有重点。4。提高听课。

  三.。像演电影一样把课堂,整理笔记,

  四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,

  五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。

  六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,

  另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。

  《希腊文集》中的方程问题

  《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。

  《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”

  我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程

  这是一个一元一次方程。

  移项,得

  答:毕达哥拉斯有28名学生听课。

  《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:

  “驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”

  这个问题可以用方程组来解:

  设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有

  2(x-1)=y+1 (1)

  又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有

  x+1=y-1 (2)

  (1)与(2)联立,有

  这是一个二元一次议程组。

  (1)-(2)得 x-3=2,

  x=5 (3)

  将(3)代入(2),得y=7。

  答:驴原来驮5口袋,骡子原来驮7口袋。

  《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的`守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。

  这道题也是用诗歌形式写在的:

  爱罗斯在路旁哭泣,

  泪水一滴接一滴。

  吉波莉达向前问道:波利尼

  “是什么事情使你如此伤悲?

  我可能够帮助你?”

  爱罗斯回答道:

  “九位文艺女神

  不知来自何方

  把我从赫尔康山采回的苹果,

  几乎一扫而光,

  叶芙特尔波飞快地抢走十二分之一,

  爱拉托抢得更多——

  七个苹果中拿走一个。

  八分之一被达利娅抢走,

  比这多一倍的苹果落入特希霍拉之手。

  美利波美娜最是客气,

  只取走二十分之一。

  可又来了克里奥,

  她的收获比这多四倍。

  还有三位女神,

  个个都不空手,

  30个归波利尼娅,

  120个归乌拉尼娅,

  300个归卡利奥帕。

  我,可怜的爱罗斯。

  爱罗斯原有多少个苹果?还剩下50个苹果。”

  设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。

  可列出方程

  答:爱罗斯原来有苹果3360个。

  选自《中学生数学》20xx年5月下

  20xx高考数学复习三步曲

  编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!

  今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。

  理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。

  抓基础:不变应万变

  把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。

  当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。

  理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。

  尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。

  破难题:提升应对力

  如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。

  理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。

  为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。

  重方法:培养好品质

  有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。

  我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!

  以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。

  生物数学概论

  生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。

  生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。

  生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。

  由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。

  生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。

  数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。

  数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。

  比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。

  还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。

  由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。

  多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。

  生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。

  多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。

  系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。

  在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。

  生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。

  概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。

  60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。

  继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。

  上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。

  总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。

  数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。

  当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。

  20xx年高考数学命题预测之立体几何

  【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

  20xx年高考中立体几何命题有如下特点:

  1.线面位置关系突出平行和垂直,将侧重于垂直关系。

  2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。

  3.多面体及简单多面体的概念、性质多在选择题,填空题出现。

  4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。

  此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题

数学解题方法3

  高中数学解题的方法

  对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。

  第一阶段:理解问题是解题思维活动的开始。

  第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。

  第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。

  第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。

  数学解题的技巧

  为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。

  一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

  基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

  一、 熟悉化策略

  所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

  一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

  常用的途径有:

  (一)、充分联想回忆基本知识和题型:

  按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

  (二)、全方位、多角度分析题意:

  对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

  (三)恰当构造辅助元素:

  数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

  数学解题中,构造的辅助元素是多种多样的',常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

  二、简单化策略

  所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

  简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

  因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

  高二数学解析几何训练题精选

  一、选择题:

  1、直线 的倾斜角是______。

  A. B. C. D.

  2、直线m、l关于直线x = y对称,若l的方程为 ,则m的方程为_____。

  A. B. C. D.

  3、已知平面内有一长为4的定线段AB,动点P满足PA—PB=3,O为AB中点,则OP的最小值为______ 。

  A.1 B. C.2 D.3

  4、点P分有向线段 成定比λ,若λ∈ ,则λ所对应的点P的集合是___。

  A.线段 B.线段 的延长线 C.射线 D.线段 的反向延长线

  5 、已知直线L经过点A 与点B ,则该直线的倾斜角为______。

  A.150° B.135° C.75° D.45°

  6、经过点A 且与直线 垂直的直线为______。

  A. B. C. D.

  7、经过点 且与直线 所成角为30°的直线方程为______。

  A. B. 或

  C. D. 或

  8、已知点A 和点B ,直线m过点P 且与线段AB相交,则直线m的斜率k的取值范围是______。

  A. B. C. D.

  9、两不重合直线 和 相互平行的条件是______。

  A. B. 或 C. D.

  10、过 且倾斜角为15°的直线方程为______。

  A. B. C. D.

数学解题方法4

  逆推

  也称倒推法。思考的途径是从题目的问题出发,倒着推理,逐步靠拢已知条件,直到解决问题。有些题目用顺推法颇感困难,而用倒推法解却能化难为易。

  例1 一种细菌每小时可增长1倍,现有一批这样的细菌,10小时可增长到100万个。问增长到25万个时需要几小时?

  因为细菌每小时增长1倍,所以增长到25万个后再经过1小时就可以增长到25×2=50(万个),增长到50万个后又经过1小时就可以增长到50×2=100(万个)。

  从25万个增长到100万个要用1+1=2(小时),所以增长到25万个时需要10-2=8(小时)。

  把第二天运走后再余下的吨数看作单位“1”,还剩下的12吨占第二天

  又把第一天运走后余下的吨数看作单位“1”, 16吨货占第一天运走

  =30(吨)

  例3(国外有趣的故事题)传说捷克的公主柳布莎,决定她所要嫁的人必须能解下面的问题:一只篮中有若干李子,取出它的一半又一枚给第一人,再取出其余的一半又一枚给第二人,又取出最后所余的一半又一枚给第三人,那末篮中的李子就没有剩余。篮内有李子多少枚?

  逆推法:〔(3×2+1)×2+1〕×2

  =〔7×2+1〕×2

  =15×2

  =30(枚)

  若抓住“1”的转移,算式为

  例4 甲、乙两人从1开始轮流报数,每人每次只能轮流报1至3个连续自然数,如甲报1、2,乙可报3或3、4;或3、4、5,谁先报到100谁胜;乙怎样报才能获胜?

  解题分析:如果某一次乙报后还剩下100或99、100;或98、99、100,那么甲取胜,乙则败。但是乙要取胜,他倒数第二次报后必须剩下4个数,使甲一次不能报完。因为100是4的倍数,甲先报,无论甲报几个数,乙只要报自己报的数字个数与甲报的个数加起来是4。这样,剩下的数字个数总是4的倍数,乙定获胜。

  例5 有甲、乙两堆小球,各有小球若干,如果按照下列规律挪动小球;第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,那么如此挪动四次后,甲、乙两堆的所有小球恰好都是16个,问甲、乙两堆小球最初各有多少个?

  此题用逆推法列表分析如下:

  从表中可明显看出甲堆最初有21个小球,乙堆有11个。

  小学数学难题解法大全之巧妙解题方法(十五)

  文章摘要:使用正确的解题方法不但可以大大加快解题的速度而且可以提高解题的正确率。为此,数学频道编辑部整理了一些巧妙的解题方法,以便同学们更好的去学习这些知识。

  巧虚构

  虚构求解是一种重要的数学思维方法,可帮助我们从困境中解脱出来,是假设法的一种。

  例1 我国运动员为参加十一届亚运会进行长跑训练。跑10000米的时

  设过去跑10000米需要21分钟,那么缩短的时间为1分钟,现在所需的时间为20分钟,因此过去与现在所需时间的比为21∶20。

  根据路程一定,速度与时间成反比例,则过去与现在的速度比为20∶21。所求为

  (21-20)÷20=5%

  例2 甲、乙、丙三人进行竞走比赛。甲按某一速度的2倍走完全程的一半,又按某一速度的一半,走完余下的路程。乙在一半的时间内,按某一速度的2倍行走,在另一半的时间内,却按某一速度的一半行走。丙始终按某一速度走完了全程。问谁先到达目的地?谁最后到达目的地?

  设三人竞走的全程为400米,某一速度为每分钟行100米。那么甲行完全程需要的时间为(400÷2)÷(100×2)+(400÷2)÷(100÷2)=5(分钟)。

  又设乙行完全程的时间为x分钟,则得:

  解得 x=3.2

  丙行完全程的时间为400÷100=4(分钟)

  例3 A、B、C、D、E五个代表队参加某项知识竞赛,结果的得分情况是这样的:

  A队比B队多50分;…………………………………①

  C队比A队少70分;…………………………………②

  B 队比D队少30分;…………………………………③

  E队比C队多80分。………………………………④

  请按各队的得分的多少,给这五个队排一个先后名次。分析:从这四个关系中解出五个队的得分数是不可能的。于是,我们可以给这五个队中任意一个队虚构一个分数,并由此逐个算出其四个队的分数(当然也是虚构的.)最终以这些虚构的分数来回答名次的排序问题。

  解:设A队得200分。

  则由①知:B队得200-50=150(分)

  由②知:C队得200-70=130(分)

  由③知:D队得150+30=180(分)

  由④知:E队得130+80=210(分)

  名次为E、A、D、B、C。

  例4 刘师傅和古师傅加工同一种零件。刘加工的零件

  傅加工这种零件的技术水平是否相同?如果不同谁的技术好些?

  分析:比较两人技术水平的高低,可以比在同一时间内谁加工的零件数多,也可以比加工同样数量的零件谁用的时间少。

  现在问题中既没有给出两位师傅各自加工的零件数、也没给出他们加工零件所用的具体时间数。并且这两种量的具体数值是求不出来的。和前面的一样,可任我们虚构。

  =2(小时)。

  所以刘师傅平均每小时加工的零件数为

  古师傅平均每小时加工的零件数为

  30÷2=15(个)

  显然,古师傅的技术水平高一些。

数学解题方法5

  摘 要:最近几年来,在新课程改革正的大潮中,数学课堂教学改革也不例外,对教师的教学方法以及课堂教学模式都提出了较高的要求,课堂教学活动中越来越重视对学生能力的培养。高中数学知识的学习对学生日后的升学以及生活都有着深远的意义,为此,高中数学教师在积极地寻找提高学生学习能力的方式,而在其中,应用题解题方法的教学是难点。为了突破难点,本文针对新课程改革下高中数学应用题的教学方式进行简要论述。

  关键词:高中数学;应用题;解题方法

  新课程改革的浪潮推动着基础教育的大面积变革,从课程内容、课程功能、课程结构、教学手段、教学模式、课程评价以及管理等方面都有了很大的创新和发展。那么,借着新课程改革的东风,高中数学中的难点应用题解题方法的教学该如何进行提高呢?学生的解题思路又该通过何种方式培养呢?本文主要做了如下论述。

  一、高中数学应用题教学的方法

  高中数学应用题的教学方法有很多种,在实际应用中,教师要根据学生的接受能力以及数学课程的内容进行优化选择。

  (一)导学案教学方法。导学案是教师为了在课堂当中能够指导学生实现自主学习而设计的一套材料体系,通常都包括“学习目标、预习导学、自主探究、自学检验、小结与反思、当堂反馈、拓展延伸、总结反思”等不同的部分。导学案教学方法在高中数学应用题教学中的广泛应用,能够帮助教师更好的发挥自身的指导作用,教师指导学生自主完成学案中的不同环节,学生在这一合作探究的过程中就能够实现对知识的“来龙去脉”清晰掌握。应用题中所涉及到的知识点通常比较多,通过导学案教学可以让学生思路清晰地去解决探究中遇到的每一个问题,同时还能够起到复习旧知识点的作用。

  (二)生活化教学方法。生活化教学方法就是指教师在课堂教学中要积极引导学生的思路走向实际生活,强化所学到的知识与实际生活的联系。在高中数学应用题教学中,生活化的教学方式是最有利于提高学生只是应用能力的方法。教师在讲授应用题的解决方法中,常常会列举很多生活中常见的数学问题,让学生用根据自己的生活经验以及知识基础,通过合作探究,去解决这些问题。

  (三)自主学习教学方法。自主学习教学方法旨在培养学生的自主学习能力,自主学习是要以学生的主动学习、独立学习为主要特征的。在高中数学课堂中自主学习的实现在于教师教学情景的创设,如果教学情景创设得当,能够调动学生学习的兴趣,那么就能够充分的发挥自主学习教学方法。自主学习教学方法可以分为几个阶段进行,第一个阶段,就是创设一个新颖且结合当堂数学知识的情境。第二个阶段,在情境中分层设置探索的问题,让学生在问题的解决中获得成就感,从而自主探究问题。第三阶段,总结学生在探究过程中遇到的问题,给予指导,让学生根据老师的指导进行探究活动反思。

  二、高中数学应用题教学中解题思路培养的几点建议

  根据新课程标准的要求,教师在课堂教学中,不但要教授学生掌握知识,还要重视学生能力的培养,这无疑给教师的课堂教学带来了难题,针对高中数学应用题教学中学生解题思路的培养,提出了几点建议。

  (一)增强学生建模能力。学生的建模能力高低与学生的观察能力、分析能力、综合能力以及类比能力等都有着重要的关系,同时还要求学生要具有较强的抽象能力。所以,在要增强学生的建模能力首先就应该培养学生多方面的能力。也就是说在高中数学应用题教学中,要把建模意识贯穿在其中,在日常学习生活中也要积极引导学生用数学思维去观察、思考并分析不同事物之间的内在联系、空间联系以及数学知识,这样不断指导学生从复杂的问题中抽象出数学模型,数学建模意识就会逐渐的成为学生观察并分析问题的习惯,从而就能够实现用数学思路去解决诸多实际问题。在应用题教学中引导学生应用建模能力能够提高学生解决实际问题的能力,培养他们多元化的解题思路。

  (二)培养学生发散性思维。学生发散思维的培养可以从多个方面进行,首先,改编多解题。教师可以通过改编习题的方式来训练学生的`发散思维,让学生养成一种多元思维的习惯。教师通过一题多解多变的方式对学生进行反复训练,可以克服学生思维中固有的狭隘性。其次,创设教学情景,调动学生思考的积极性。学生思维的惰性是影响学生发散思维形成的原因之一,所以,要通过调动学生思维的积极性来克服惰性,在高中数学教学中,教师要调动学生对知识的渴望,让学生情绪饱满的进行探究思考。再次,联想思维的培养。联想思维是一种富有想象力的思考方式,是发散思维的一种标志。在应用题的教学中可以引导学生转化思考问题的思路,比如,有些应用题的叙述并不是工程类的问题,但是特点与其相似,教师就可以引导学生用工程类问题的解题思路去思考这一问题,这种转化的方式能够有效的锻炼学生思维的发散性。

  (三)激发学生创新力。创新能力源于创新意识,而创新意识又是一种发现问题并积极探索的心理取向,教师要想培养学生的创新能力,首先要创设一个轻松愉快的学习环境,这种学习环境要以师生关系的平等为前提条件。学生只有在轻松的心理氛围之内,才能够对数学知识产生求知欲,进而才能谈到创新。其次,鼓励学生提出问题。创新就是新问题的提出和解决的过程,教师要接纳学生所有的观点,正确的观点鼓励他们发扬,错误的观点引导他们继续探究,同时要引导学生发现问题、提出问题。除此之外,创新能力的激发还可以通过学生观察力、想象力等的培养来实现。

  以上主要是从高中数学应用题常用的教学方法和高中数学应用题教学中解题思路培养建议这两个大的方向进行了论述,其实在数学课堂教学中,对学生应用题解题思路的培养方式有很多种,而教师应该选取怎样的方式就要根据学生的个性特征具体判断了。

数学解题方法6

  方法1:调理大脑思绪,提前进入数学情境

  考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

  方法2:沉着应战,确保旗开得胜,以利振奋精神

  良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

  方法3:“内紧外松”,集中注意,消除焦虑怯场

  集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

  方法4:一“慢”一“快”,相得益彰

  有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

  方法5:“六先六后”,因人因卷制宜

  在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

  1.先易后难

  。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

  2.先熟后生。

  通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

  3.先同后异。

  先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,

  4.先小后大。

  小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗

  5.先点后面。

  近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

  方法6:确保运算准确,立足一次成功

  数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

  方法7:讲求规范书写,力争既对又全

  考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的'一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

  方法8:面对难题,讲究方法,争取得分

  会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

  1.缺步解答。

  对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

  2.跳步解答。

  解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

  方法9:以退求进,立足特殊

  发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

  方法10:应用性问题思路:面—点—线

  解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

  方法11:执果索因,逆向思考,正难则反

  对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

  方法12:回避结论的肯定与否定,解决探索性问题

  对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

数学解题方法7

  中考是通过解题来判断学生数学能力的,中考复习的最终成果要落实到解题能力的提高上来。解题训练要做到“举一反三,熟练运用”,但不能盲目地、无目的地、重复地、无选择地强化训练,采取题海战术只能事倍功半。

  (1)以中档综合题为训练重点。

  ①中档综合题区分度好,训练价值高,教师讲得清楚,学生听得明白,有利于学生数学素质的提高。

  ②中下档题目是考生得分的主要来源,是进一步去解高档题的基础。

  ③高档题要有,但要控制数量,重在讲清“怎样解”,从何处下手、向何方前进。

  (2)以近年中考题和各区县中考模拟考题为基本素材。

  ①中考试题或模拟考题经过考生的实践检验和广大教师的深入研讨,科学性强(漏洞也清楚),解题思路明朗,解题书写规范,评分标准清晰,是优质的训练素材。

  ②中考试题或模拟考题都努力抓课程的重点内容和重要方法,并且每套中考试题或模拟考题能覆盖全部知识点的60%~80%,几套试题一交*,既保证了全面覆盖,又体现了重点突出。

  ③近年中考试题或模拟考题能反映命题风格、命题热点、命题形式(特别是新题型)的新动向、新导向,以近年中考题为基本素材,有利于考生适应中考情境,提高中考复习的针对性。中考题型的创新形式主要有:情景题、应用题、开放题、操作题、探索题等,体现出“经历、体验、探索”的'过程性目标,表现为情景性、应用性、开放性、过程性、探究性。

  (3)以提高解题准确和速度为突破口。

  中考要在100分钟完成25道题,30多问,题量是比较多的,而且有大量实际情况、或过程呈现的叙述,阅读量又是比较大的。怎样提高学生的解题速度呢?由熟到快——原则性建议是:

  ①深刻理解基础知识,熟练掌握基本方法,努力形成基本技能。

  ②合理安排考试时间,书写做到数学语言是通用、精确、简约的科学语言。

  ③平时进行速度训练。以此来加快书写速度,降低思维难度,提高解题质量。

数学解题方法8

  一要审题。

  很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

  二要记。

  这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

  三要引申。

  难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的`引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

  四要分析综合法。

  分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有

  1、对顶角相等

  2、平行线里同位角相等、内错角相等

  3、余角、补角定理

  4、角平分线定义

  5、等腰三角形

  6、全等三角形的对应角等等方法。

  结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

  五要归纳总结。

  很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

数学解题方法9

  文章摘要:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。

  巧用最小公倍数

  例1 一篮子鸡蛋,2个2个地数多1个。3个3个地数多1个,4个4个地数多1个,5个5个地数多1个,6个6个地数多1个,7个7个地数正好不多不少。试问这篮子鸡蛋是多少个?

  解:鸡蛋数量是一个比2、3、4、5、6的公倍数多1,而且恰好是7的倍数的数。

  2、3、4、5、6的最小公倍数是60,但60+1=61不是7的倍数。60的2倍、3倍、4倍加上1以后都不满足条件。

  只有60的5倍加1能被7整除,所以鸡蛋数是:

  60×5+1=301(个)

  满足上述条件的数还有721,1141……但篮子里不可能装这么多鸡蛋。

  例2 孟老师负责运动会团体操的队形排列。他在操场上把参加团体操的同学排成10人一行,发现少1人;排成9人一行,还是少1人;排成8人一行,还是少1人;排成7人一行、6人一行……2人一行,每次总是少1人。孟老师生气了:真见鬼,怎么排都少1人!到底有多少人参加团体操?全校的学生都来了也不过3000人。

  解:孟老师只要把自己算进去,那么10人一行也好,9人一行也好……,2人一行也好,都能恰好分完,就是说,正好是10、9、8、7、6、5、4、3、2的公倍数。这几个数的最小公倍数2520,减去孟老师,所以是2519人。

  例3 三人绕圆形花园散步,甲45分钟绕一周;乙60分钟绕一周;丙72分钟绕一周。今三人同地同向同时起行。问经几小时后在原地相会?相会时各绕几周?

  解:相会时必定是三人绕花园一周时间的公倍数,而最少时间为其最小公倍数。

  [45,60,72]=360

  原处相会需经360÷60=6(小时)

  甲绕 360÷45=8(周)

  乙绕 360÷60=6(周)

  丙绕 360÷72=5(周)

  例4 某毕业班开茶话会,两人一盘桔子,三人一盘梨,四人一盘糖,共用盘65个。参加会议的学生多少人?

  解:人数是2、3、4的公倍数,其[2,3,4]=12,即至少12人,用盘

  12÷2+12÷3+12÷4=13(个)

  因为实际用盘是13的65÷13=5(倍),所以参加会的学生是

  12×5=60(人)

  例5 农机厂生产一批零件,单独做甲车间10天完成,乙车间8天完成,已知乙车间每天比甲车间多生产200个零件,这批零件一共多少个?

  此题解法很多,但都没有用求最小公倍数的方法来得简便。

  求出10和8的最小公倍数,就是求出了至少要经过多少天,乙车间比甲车间多生产整整“一批零件”。

  [10,8]=40 200×40=8000(个)

  例6 甲、乙两车同时从A至B,甲车每小时行48千米,乙车每小时行36千米。甲车途中停留4小时,结果比乙车迟到1小时,求A、B两地的距离。

  此题的解法也很多,但都比不上求最小公倍数的'解法巧妙。

  由题意可知,从A至B,甲车比乙车少用4-1=3(小时),可用求最小公倍数法求出至少行多少千米,甲车比乙车少用1小时,那么,3个这样的多少千米就是A、B两地间的距离。

  [48,36]=144

  144×(4-1)=432(千米)

  例7 两个小学生滚铁环,当甲环旋转50周时,乙环在同样的距离中转了40周,如果乙环的周长比甲环长0.44米,求这段距离?

  解:[50,40]=200

  这段距离为0.44×200=88(米)

  因为50与40的最小公倍数是200,而200÷50=4,200÷40=5,说明都转200周时甲环行了4段这样的(88米)距离,而乙环又则行了5段同样的距离,比甲多出一段这样的距离。

  例8 一群鸭。三个三个地数,剩1只;五个五个地数,剩3只;七个七个地数,剩5只。连头带脚一起数,不超过500.这群鸭有多少只?

  解:因为鸭头、鸭脚总数不超过500,而一只鸭的头和脚是3,所以鸭的总数不会超过200只。

  鸭数用3除余1,用5除余3,用7除余5,它们的除数和余数都差2,加上2就一定能被这三个数整除。

  [3,5,7]=105

  鸭数为 105-2=103(只)

数学解题方法10

  逻辑推理

  例1 从代号为A、B、C、D、E、F六名刑警中挑选若干人执行任务。人选配备要求:

  (1)A、B两人中至少去1人;

  (2)A、D不能一起去;

  (3)A、E、F三人中派2人去;

  (4)B、C两人都去或都不去;

  (5)C、D两人中去1人;

  (6)若D不去,则E也不去。

  应派谁去?为什么?

  可这样思考:由条件(1),

  假设A去B不去,由(2)知D不去,由(5)知C一定去。这样,则与条件(4)B、C两人都去或都不去矛盾。

  假设A、B都去,由(2)知D不去,由(5)知C一定去,由(6)知E不去,由(3)知F一定去。无矛盾,(4)也符合。

  故应由A、B、C、F四人去。

  例2 河边有四只船,一个船夫,每只船上标有该船到达对岸所需的时间。如果船夫一次划两只船过河,按花费时间多的那只船计算,全部划到对岸至少要用几分钟?

  至少要用2+1+10+2+2=17(分钟)

  例3甲、乙、丙三人和三只熊A、B、C同时来到一条河的南岸,都要到北岸去。现在只有一条船,船上只能载两个人或两只熊或一个人加一只熊,不管什么情况,只要熊比人数多,熊就会把人吃掉。人中只有甲,熊中只有A会划船,问怎样才能安全渡河?

  这里只给出一种推理方法:

  枚举法

  把问题分为既不重复,也不遗漏的有限种情况,一一列举问题的解答,最后达到解决整个问题的目的。

  例4 公社每个村准备安装自动电话。负责电话编码的雅琴师傅只用了1、2、3三个数字,排列了所有不相同的'三位数作电话号码,每个村刚好一个,这个公社有多少个村?

  运用枚举法可以很快地排出如下27个电话号码:

  所以该公社有 27(3×9)个村。

  例5 国小学数学奥林匹克,第二次(1980年12月)3题:一个盒中装有7枚硬币:2枚1分的,2枚5分的,2枚10分的,1枚25分的。每次取出两枚,记下它们的和,然后放回盒中,如此反复。那么记下的和至多有多少种不同的数?

  枚举出两枚硬币搭配的所有情况

  共有9种可能的和。

数学解题方法11

  第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。

  因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

  因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。再比如直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。

  第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如20xx年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

  再如数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的.是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为"逆推"。

  如第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。

  在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

数学解题方法12

  摘要:就数学的解题教学从重一题多解、重视一题多变到培养学生抓住问题的实质的能力;从尊重学生的思维选择到立足通法、兼顾巧法等作了阐述,认为对学生要加强思维教育,培养能力,数学解题教学才能收到好的效果。

  关键词:数学教学;解题;思维;能力探讨

  绝大部分的数学家和从事数学教育的工作者都肯定了解解题教学在数学教学中的重要性,学生数学思维能力的提高,只有在解决数学问题的思维实践中才能实现。对数学解题教学中思维教育应侧重于如何启发、引导,同时展示教师的思维过程来达到训练学生思维能力的目的。在解题教学中应注重从以下几个方面来培养学生的数学能力和数学素质。

  一、重视一题多解,一题多变

  解题过程中,教师应有目标、有计划地引导学生体会、提炼其隐含的数学思想方法,通过一题多解使学生在接受知识的同时,受到数学思想方法的熏陶和启迪,这样,才能把提高学生的能力落到实处。

  一题多变常常能使学生把问题的诸方面都观察到,从而掌握这类问题的解题规律。例如求定义在一个闭区间上函数y=ax2+bx+c的值域时,我这样安排例题:求函数y=―x2+4x―2定义在区间[0,3]上的值域(显然其顶点横坐标―b2a=2),经过引导,学生懂了,会解了。进一步将这个表达式的定义域改为[0,4]→[2,5]→[3,5]→[-2,1]。通过这些变化就把这个问题的各个方面都讨论了,解决这类问题的规律也就摸到了。同时,还可以顺便引导学生在解决数学问题时的举一反三的想法。

  二、培养学生抓住问题的能力

  解题教学中,解题只是手段,重要的是通过解题教会学生思维,提高学生的能力。要努力提高每一道题的功效性,在错综纷杂的题型、套路中领略其万变不离其宗的实质,以不变应万变的策略,找出解题的思想方法,支解简化各环节。

  三、发展学生的思维能力

  教师讲题始终要坚持分析地讲,全面展示、暴露解题途径的寻找过程,“为什么要这样做”比“这样做”更重要。而有的教师解题总是演示“成功”,思路、方法一想就很正确、很巧妙,从不展示“失败”,展示在思路和方法碰壁时怎么办,如何从有限次失败后得到正确的思路和方法,其结果只能是教师讲得精彩,学生听得轻松,但碰到条件稍加变化的问题便束手无策,日积月累,学生就不会独立地思维和克服困难,当然也不会有独立的解题能力。

  在寻求解题思路时,要让学生逐步学会怎样分析、怎样判断、怎样推理、怎样选择方法、怎样解决问题。注意展现:(1)解题的思维过程,使学生的思维与教师的思维产生共鸣,使教师的思维为学生的思维过渡到科学的思维架起桥梁,变传授过程为发现过程;(2)尝试探索发现的过程,把失败过程和失败到成功的过程暴露出来,从反思中使学生看到转变思维的方向、方式、方法和策略,缩小探索范围,尽快获得发现的.成功,这在发展思维能力上无疑是一种很好的体验和进步。

  四、尊重学生的思维选择,及时对解题过程进行调控

  解题教学中,教师必须让学生真正参与数学的解题过程,及时地根据学生的信息反馈,对解题过程进行调控。特别是当学生的思路与教师原先的设想有差距,但对深入地理解问题又具有一定价值时,教师要因势利导,想学生所想,急学生所急,帮助学生分析思路受阻的原因,完善他们的想法,教会学生寻求出路的方法,引导学生分析方法的优劣,要让基础不同、思路各异的学生各有所得,只有这样,才能使不同层次的学生的解题能力得到提高,使大多数学生建立起解题的信心,克服解题的恐惧感,体会成功的喜悦和树立战胜挫折的勇气。

  五、适时设置解题陷阱,充分暴露典型错误

  应当研究学生所犯的错误,并把错误看成是认识过程和认识学生数学思维规律的手段,教师应当利用学生所犯错误来促进他们加深对数学要素和规律性的理解。教师有意识地给学生设置解题陷阱,让学生陷进去,把典型错误暴露出来,引导学生积极思考,探索出正确的解题途径,是消除错误、治根治本的有效方法。

  教学的理论与实验表明,处理学生的解题错误有很强的艺术性,处理得好,可让学生从错误中悟出新意,感受到探究问题的乐趣,从中学到比原问题更广的内容,既增加防止错误的免疫力,又能发展学生的智力。

  需要注意的几个问题:1.例题的讲解追求的不是解题过程写得多么详细,而是解题的思维过程,这样学生才不会单纯模仿,不会缺乏独立分析问题的能力,遇到新问题才不会觉得束手无策。2.解题教学的关键是要努力提高每一道题的功效性。例题不要安排得太乱、太滥,要按知识线索有层次地、线条分明地安排,使学生通过这些例题方法的学习一步步地体会这部分内容的数学思维方法。

  解题教学是一门科学,也是一门艺术,它对发展学生的思维,培养学生的能力,促进学生良好品质结构方面具有重大的作用。

  六、立足通法,兼顾巧法

  所谓通法,就是在解决问题(通常是某类问题)中具有普遍意义的方法。这种方法通常是以基础知识为依据,以基本方法为技能,它的解法思想合乎一般的思维规律,其具体操作过程必须为全体学生所掌握。

  巧法,着眼于提高。巧法的灵魂在于“巧”,即在于它整体地把握问题,灵活地运用双基,巧妙地使用条件,是抽象、概括、发散、合理推理的产物。

  解题教学中教师必须立足通法,兼顾巧法,必须引导学生从基本要求思想方法出发,加强对学生基本思想方法的启迪和训练,在基本方法已熟练的基础上,再从常规过渡到特技,这样才能促使学生思维进一步深化。

数学解题方法13

  近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目

  中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用最好的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于其它时间段。

  在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的.考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。

  在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成

  功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。

  一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。

数学解题方法14

  1、选题

  ①中考试题具有良好的教学导向功能,既引导学生学会学习,乐于科学探究,乐于在生活中用数学;又引导我们数学教师积极投身到数学课程改革中去,努力改进初中数学教学,研究如何按照中考试题的要求把握平时练习、复习。因此可以收集历年来有代表性的中考数学压轴题,并进行分类整理以专题的形式进行复习。

  ②试题源于课本已成为历年中考的命题原则,具有良好的导向作用。因此在最后的复习阶段可以对课本的例、习题或者一些经典的历年试题在认真研究的基础上加以变式再创造,在复习教学中开展陈题新解,以一题多解、一题多变、多题一解等的形式将知识串联,方法归纳,以少胜多,提高学生的解题能力。

  2、解题策略

  在每一次的考试中,我们都会发现有部分基础较好的学生对于压轴题的解答得分率也不高,认真分析、究其原因主要是会而不对,对而不全,全而不美的问题。因此应该让学生向错误学习,放手让学生自己去搞点讲评,建立错题档案,对于错的题目进行反复训练。对于综合性的压轴题,让学生总结题目考查了哪些知识点,每个知识点是从哪个角度考查的,题目考查了哪些数学思想方法,本题有哪几种解题方法,最佳解法是什么当自己出错时,是知识上的错误还是方法上的错误,是解题过程的失误还是心理上的缺陷导致的失误。切实解决会而不对,对而不全,全而不美的问题。

  3、规范书写

  每次考试之后总会发现:有部分学生在解最后一题的压轴题时,解题步骤不规范,导致失分;甚至由于第1小题书写不规范,导致自己在做后面的小题时,抄错而不得分。因此我们在平时的`教学中要讲清楚每一题中每一步的评分标准,要舍得时间让学生在课堂上把一道题解答完整,并认真批改,及时纠错;而最重要的就是要严格要求每一次作业中的书写过程,认为不过关的坚决要求重写,慢慢养成习惯。杜绝平时因时间不够而重答案轻过程。

  4、处理好关系

  由于压轴题的难度较高,因此在专题复习中针对的都是基础较好的学生,而对于基础较差的学生有可能对此失去兴趣,成绩下滑。所以在最后的一个月复习中,我校打算压轴题的专题、基础知识的进一步整理、综合模拟三部分交叉进行,照顾到各层次的学生,让他们都有所收获。

  数学学习方法推荐:

  1、精做题

  数学能力的提高离不开做题,但当处理的题目达到一定的量后,决定复习效果的关键因素就不再是题目的数量,而在于题目的质量和处理水平。解数学题要着重研究解

  题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。

  一节课与其抓紧时间大汗淋淋地做三十道考查思路重复的题,不如深入透彻地掌握一道典型题。

  2、学会省时

  要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断

  积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。解法的差异,速度的差异,正体现了学生不同层次的思维水平。

  3、改错反思

  在复习过程中,难免会出现一些大大小小的失误,也会遇到一些拦路虎,这时候,可能要么束手无策,要么费了九牛二虎之力才能解决,要么是问题虽然解决了,但自我感觉不好或是思路不清,东拼西凑才找到答案;或是解法繁琐,不尽人意。碰到这种情况不要紧张,这正是拓展思维、提高能力的契机,不要轻易放过。

  错误是最好的老师,我们要认真的纠正错误,当然,更重要的是寻找错因,及时进行总结,三、五个字,一、两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次;轻描淡写,文过饰非的查错因是没有实质性的意义的。只有认真的追根溯源的查找错因,教训才会深刻。

  在复习过程中,要注意多学习,多更新,不要固守自己熟悉但落后的方法习惯,要向老师学,向其它同学学,取人之长,补己之短。要做好解题后的反思,清理解题思路,寻求最佳解答方法,以达到举一反三、融会贯通的目的。

  4、养成好习惯

  好的习惯终生受益,不好的习惯终生后悔,吃亏。

  一慢一快,稳中求快,立足一次成功:

  解题时审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。这样做的后果一则容易先入为主,致使有时错误难以发现;二则一旦发现错误,尤其是起步就错,又要重复做一遍,既浪费时间,又造成心理负担。

  注意书写规范,重要步骤不能丢,丢步骤=丢分。

  考试中应统筹安排时间,先易后难,不要在一道题上花费太多时间,有时放弃可能是最佳选择。

  5、正确处理内容

  无论是陈题新题,传统内容还是新增内容,要点在于训练学生的思维理解,分析问题、解决问题的能力。

  6、提高运算能力

  坚持长期训练培养,注重算理,注意近似计算,估算,心算,以想代算。

数学解题方法15

  文章摘要:使用正确的解题方法不但可以大大加快解题的速度而且可以提高解题的正确率。为此,数学频道编辑部整理了一些巧妙的解题方法,以便同学们更好的去学习这些知识。

  巧试商

  (1)定位打点

  首先用打点的方法定出商的最高位。

  其次用除数的最高位去除被除数的前一位(如果被除数的前一位不够,就除被除数的前两位)。

  最后换位调商。试商后,如果除数和商相乘的积比被除数大时,将试商减1;小时,且余数比除数大,将试商加1.例略。

  (2)比积法

  就是在求得商的最高位后,以后试商时,把被除数和已得的商与除数之积比较,从而确定该位上的商。常可一次试商获得成功,从而提高解题速度,还可培养学生的比较判断能力。

  例如,9072÷252=36.

  十位上商3,得积756.在个位上试商时,只要把1512与756相比较,便知1512是756的2倍,故商的个位应是3的2倍6.特别是当商中有相同数字时,更方便。

  本题在个位上试商时,只要把1268与1256相比较,便知应为8,且很快写出积1256,从而得到余数12.

  (3)四舍五入法

  除数是两、三位数的除法。根据除数“四舍五入”的试商方法,常需调商。若改为“四舍一般要减一,五入一般要加一”,常可一次定商。

  例如,175÷24,除数24看作20,被除数175,初商得8,直接写商7.

  2299÷382,382可看作400,上商5,积是20xx.接近2299,但结果商还是小,可直接写商6.

  (4)三段试商法

  把两位数的除数的个位数1—9九个数字,分为“1、2、3”、“4、5、6”、“7、8、9”三段来处理。

  当除数的个位数是1、2、3时,用去尾法试商(把1、2、3舍去)。

  商。

  当除数个位数是4、5、6时,先用进一法试商,再用去尾法试商,然

  商为8,取6—8之间的“7”为准确商。如果两次初

  是初商6、7中的“6”.

  (5)高位试低位调

  用除数最高位上的数去估商,再用较低位上的数调整商。例如:513÷73=7的试商调商过程如下。

  A.用除数十位上的7去除被除数的前两位数51,初商为7;

  B.用除数个位上的3调商:从513中 去减7与70的积490,余23,23比初商7 与除数个位数3的积21大,故初商准确,为7.

  如果283÷46时,用除数高位上的4去除28,初商为7,用除数个位6调商,从283中减去7与40的积余3,3比7与除数个位数6的积42小,初商则过大。调为6.

  这种试商方法简便迅速,初商出得快,由于“低位调”,准确商也找得准。同时,由于用除数最高位上的.数去估商时,初商只存在过大的情况,调整初商时只需要调小,这样,调商也较快。

  但是,有时在采用这种方法试商时,初商与准确商仍存在着差距过大的

  调商,从181中减去6与30的积,余1,1比6与7的积小,照理应将初商调为5,因为1比42小41,而41>37,为了减少调商次数,直接将初商调为“4”,称为“跳调”。这样便于较快地找出准确商。

  (6)靠五法

  对除数不大接近于整十数、整百数的,如9424÷152,不论用舍法或者入法,都要两次调商。如果我们把除数152看作150,即不是用四舍五入法,而是向五靠,一般能减少试商次数,甚至可以一次定商。

  (7)同头无除

  当被除数和除数的最高位数字相同,而被除数的次高位数字又比除数次高位数字小的,例如3368÷354=9……,1456÷182=8,一般的就用“同头无除商8、9”.

  (8)半除

  被除数的前一位或两位数正好是除数前两位数的一半或接近一半的,例如965÷193=5,1305÷261=5,一般用“半除商5”.

  (9)一次定商法

  对确定每一位商,分四步进行:

  第一步,用5作基商,先求出除数的5倍是多少;

  第二步,求差数,即求出被除到的数与除数的5倍的差数;

  第三步,求差商,差数÷除数=“差商”;

  第四步,定商,若差数>0,当差商是几,定商为“5+几”,若差数<0,当差商是几,定商为“5-几”。

  例如:517998÷678=764……6

  (1)先从高位算起,定第一位商7.

  先求除数的5倍:678×5=3390求差商(5179-3390)÷678=2……;

  定商 5+2=7;

  (2)定第二位商6.

  差商(4339-3390)÷678=1……

  定商 5+1=6;

  (3)定第三位商4.

  被除数与除数5倍的差小于0,差商不足1,

  定商5-1=4,即2718÷678的商定为4.

  对于上述一次定商法,在定商的过程中,如果被除到的数是除数的1倍或2倍,可以直接定商,不必拘泥于上面四步。

【数学解题方】相关文章:

数学常用的几种经典解题方法03-30

高一数学解题方法03-03

数学选择题的解题技巧06-30

高一数学解题套路三篇03-08

各种题型解题方法09-01

对承办方的感谢05-10

方儿茶的功效09-07

逻辑解题三大技巧06-04

配对题的解题技巧05-29