五年级数学教列方程

时间:2025-10-09 18:08:55 好文 我要投稿
  • 相关推荐

五年级数学教列方程

五年级数学教列方程1

  教学目标:

五年级数学教列方程

  1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。

  2.从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。

  教学重点:在理解题意的基础上寻找等量关系,能列方程解“相遇问题”。

  教学难点:从不同角度探究解题的思路,初步体会利用等量关系分析问题的'优越性。

  教学准备:配套课件

  一、导入阶段

  1.复习行程问题中的速度、时间、路程的基本数量关系。(口答

  甲每分钟行50米,乙每分钟行40米,1分钟两人共行几米?

  2分钟两人共行几米?

  5分钟两人共行几米?

  2.根据题意写出含有字母的式子。

  一辆卡车每小时行45千米,一辆轿车每小时行60千米,卡车和轿车同时行了x小时,问:卡车行了多少千米?

  轿车行了多少千米?

  两车共行了多少千米?

  二、结合实例,探究新知

  1. 出示例题1

  沪宁高速公路全长约270千米,一辆轿车和一辆客车分别从上海和南京两地同时出发,相向而行。轿车平均每小时行100千米,客车平均每小时行80千米,经过几小时两车在途中相遇?

  2. 学生读题,找出未知量与已知量之间的等量关系。

  (1) 你可以从题目中收集到哪些数学信息?

  (2) 学生介绍,教师画线段图。

  (3) 分析: 设经过x小时两车在途中相遇,那么客车行的路程可以用80x千米表示,轿车行的路程可以用100x千米表示。

  (4) 寻找等量关系:客车行的路程+轿车行的路程=沪宁高速公路全长。

  (5) 列方程解决问题:

  解:设经过x小时两车在途中相遇。

  80x+ 100x = 270

  180x = 270

  x = 1.5

  答:经过1.5小时两车在途中相遇。 (检验)

  三、巩固深化,灵活应用

  1. 练一练

  (1) 小亚和小巧同时从相距路程为960米的两地出发,相向而行,小亚平均每分钟走58米,小巧平均每分钟走62米,几分钟后两人在途中相遇?(学生尝试画线段图,反馈交流)

  解:设x分钟后两人在途中相遇。

  58x+ 62x = 960

  120x = 960

  x = 8

  答:8分钟后两人在途中相遇。(检验)

  (2) 两个城市之间的路程为405千米,一辆客车和一辆货车同时从这两个城市出发,相向而行,客车平均每小时行44千米,4.5小时后两车相遇,货车平均每小时行多少千米?

  客车行的路程+货车行的路程=两个城市之间的路程

  解:设货车平均每小时行x千米。

  44×4.5+4.5x = 405

  198+4.5x = 405

  4.5x = 207

  x =46

  答:货车平均每小时行46千米。(检验)

  2. 看图解题

  分析比较,与例题比较,哪些题用方程解容易想?为什么?

  3. 补充练习。(学生尝试着独立完成)

  (1)一辆客车和一辆货车同时从路程为260千米的两地同时出发,相向而行,客车平均每小时行60千米,货车平均每小时行44千米,几小时后两车在途中相遇?

  (2)小巧和小胖合作打一篇1850字的文章,小巧平均每分钟打36个字,小胖平均每分钟打38个字,完成这篇文章需要多少分钟?

  (3)甲乙两人同时从路程为546米的两地出发,相向而行,6分钟后在途中相遇,已知甲平均每分钟走50米,乙平均每分钟走多少米?

  四、全课总结

五年级数学教列方程2

  教学目的:

  使学生初步学会列方程解稍复杂的两步计算应用题。

  教学过程:

  一、复习。

  1.做课本P121页第11题。

  2.出示复习题:少年宫舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人。合唱队有多少人?

  要求学生读题,弄清题意,用笔画出重要的词字。独立计算。教师画出线段图:

  二、新授:

  1.引入新课:刚才我们用算术的方法解答了一道两步计算的应用题下面我们就来学习用方程解两步计算的应用题。

  2.出示例4:少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人。舞蹈队有多少人?

  学生读题后,指出已知条件和问题,教师画出线段图:

  问:“例题与复习题有什么相同的地方?”(数量关系相同,都是合唱队人数是舞蹈队的3倍多15人。)

  “有什么不同的地方?”(复习题中是知道舞蹈队的人数求合唱队的人数;例是知道合唱队的人数求舞蹈队的'人数。)

  使学生明白:复习题和例题数量关系相同,只是未知数和一个已知数互换了位置。

  问:这道题如果用以前的方法,应该怎样解答?(学生试做,教师提示:先要用合唱队的人数84人减去比舞蹈队的3倍多出的15人,求出舞蹈队3倍的人数,再除以3,就求出舞蹈队的人数。)

  除了这种方法外,你能用方程的方法解答出来吗?试试看。

  教师将图改为:

  让学生看图,找出数量间相等的关系,列出方程:3x+15=84,解答并进行检验。

  问:这两种方法你认为哪一种比较简便?(使学生明白这道题列方程解答比用算术方法解答容易。)

  问:这道题还可以怎样列方程?

  教师板书:84-3x=15,3x=84-15

  让学生说一说这两个方程所表示的等量关系。再说一说哪种等量关系容易思考,便于列出方程,并向学生说明,课本的解法容易掌握。列成“84-3x=15”也可以。最好不要列成第三个方程,因为“84-15”实际上是按照算术方法先求3x等于多少,这种方法需要逆思考,比较难。

  三、巩固练习。

  1.P122页的“做一做”。

  A.做第1题。把例4中的第二个条件改为“合唱队的人数比舞蹈队的4倍少8人”。让学生列出方程,然后与例4比较,使学生知道:这种用算术方法需要逆思考的应用题,不论是“几倍多几”还是“几倍少几”列方程解都比较容易。

  B.做第2题。学生独立列方程解答,同桌互相检查,再集体订正。

  2.练习三十的1~4题。

【五年级数学教列方程】相关文章:

冀教版五年级数学下册期末习题05-06

《万以上数的认识》数学教后反思(精选13篇)11-19

经典早教故事03-10

上早教和不上早教的区别03-01

鄂教版五年级上语文知识点02-29

《同分母分数加减法》数学教后反思(通用10篇)12-18

我的外教作文06-20

如何教小孩练字07-20

《坐井观天》教后反思08-23

地理教后反思05-30