数学小故事范例[15篇]
数学小故事1
当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时间处理一些自己的私事,因此打算出一道难题给学生练习。他的题目是:
![数学小故事范例[15篇]](https://p.9136.com/00/l/cafdd1a706_5fbf7ed7c2764.jpg)
1+2+3+4+5+6+7+8+9+10=?
因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。自己也就可以藉此机会来处理未完的事情。但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里。老师看了,很生气地训斥高斯。
但是高斯却说他已经将答案算出来了,就是55。老师听了吓了一跳,就问高斯如何算出来的。高斯答道:“我只是发现1和10的和是11、2和9的'和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又因为11+11+11+11+11=55,所以我就是这么算出来了。”老师同学听了以后,都对高斯竖起了大拇指。后来的高斯长大后,成为了一位很伟大的数学家。
数学小故事2
上次说到,3个外星人来到了森林里,声称要称霸森林,再称霸地球,森林里顿时一片混乱、死伤无数,几个猎人路过这里知道了原因,于是派了小兔、小猪、小马、小猴、小牛组成的一个军团去寻找一种武器“非攻”,一个非攻可以杀死两个外星人,他们要找两个非攻。
小猴、小兔、小猪、小马、小牛组成的霹雳无敌组正在一望无际的大沙漠里穿行,忽然一只超级大的蝎子从沙子底下冲了出来,把霹雳无敌组给吓得四处逃传,这时,蝎子开口说话了,“别怕,我是不会伤害你们的,我的钳子里有一把匕首,是我在跟外星人搏斗时留下的,如果帮我拿出来并猜中我出的数学题,那我就可以回答你的`每一个问题”小猴想了想,说:“好吧,但你一定得回答我们的问题。”蝎子说:“一定,一定。”于是小猴就帮蝎子把那把匕首拿了出来,然后蝎子出了一题10—1—2—3—4—5+5+4+3+2+1=?,小猴想了一想,说:“答案是不是10—1—2—3—4—5+5+4+3+2+1=10?”蝎子说:“答对了,快说吧,你有什么问题?”小猴说:“我想问一下你,在那里能找到非攻?”蝎子说:“非攻就在那一座金字塔里面。”小猴说了声谢谢就跟小伙伴们去找非攻了。他们走啊走,走啊走,终于到了那座金字塔,他们刚要进去,旁边的狮身人面像就活了过来,他们问小猴,一个问题,如果答不出来,就要吃了他们,题目是:什么东西一出生是四条腿,长大后是两条腿,老了就三条腿?猴子一听,马上说:“是人,对不对?”狮身人面像说:“对了,给你两把“非攻”。他们在回家的路上碰见了外星人,于是他们把外星人给消灭了,最后,地球又恢复到了最初的平静。
数学小故事3
[祖冲之你真伟大]:另一位教师在教圆周长的计算时,在学生探究出圆周率后,这位教师认为此时应该“渗透”爱国主义教育,于是在介绍了圆周率研究的.相关历史材料的基础上,这样提问:“大家想对数学家祖冲之老爷爷说些什么呢?”
学生们群情激奋。
生1:我想说:祖冲之爷爷你真伟大!
生2:祖冲之爷爷有勤奋严谨的钻研精神,祖冲之我佩服你。
生3:……
学生们本以为至此就结束了,谁知这位教师继续借题发挥:“那么,我们以后应该怎么作呢?”
孩子们很聪明,在教师的“指引鼓励”下,个个说出一番“豪言壮志”。不过,十分钟的课堂教学时间也就这样过去了。
数学小故事4
[最后一题错了]:记得一次去听一位小学数学老师的公开课,他在黑板上写了五道题让一名学生板演。
3×9=274×9=365×9=456×9=547×9=62
当学生写完62时,台下多数同学都大声叫喊起来:“老师,她错了,最后一题错了……”
我当时的第一反应也是认为她的最后一题算错了。
满以为那位老师会马上帮助纠正这名学生的错误,没想到他却说了一段让我至今记忆犹新的话。他说:“最后一题是错了,可大家为什么只说她错的这道题,而不说她前面四道都做对了呢?看来,我们是多么容易发现别人的短处而忽略了别人的长处,当我们面对一个人时,首先要看其优点,要宽容地对待别人......”
如果我们的老师都用一颗宽容的心对待我们的学生,在课堂上时时显出宽容的态度,我相信这比老师单纯重说教的“灌输式德育”要高明。
随着社会的发展和进步,我们越来越深刻的认识到,教育的首要任务是育人,其次才是育才。思想教育和人文教育应该渗透在每一堂课中,那么怎样在数学课堂中恰到好处的进行思想教育呢?这是值得我们每一位数学教师思考的问题。我觉得数学课堂上的思想教育不能牵强附会,不能生搬硬套,要用得适时适地才能取到应有的效果。教学必然具有教育性,是教学过程的一条基本规律。在具体教学中,学生不仅可以从知识中受到教育,而且可以从教师的教学态度、工作作风和思想情感中潜移默化地受到思想道德教育。所谓教书育人,正是这个道理。但是,这种教育必须克服两种错误的倾向:一是过分强调教学的思想教育意义,不顾教学内容的具体特点,生拉硬扯地进行空洞的、贴标签式的思想教育;一是完全忽视教学的教育意义,单纯的为使学生获得知识技能而进行教学,只教书不育人。如果我们静下心来再来审视上面的'三个教学案例,问题来了。
案例1中,学生把自己不喜欢吃的西瓜给妈妈,难道思想就有问题了吗?如果换一个角度来说,我们更应该看到这个孩子身上有着诚实的品质。孩子是敢于说真话的,而我们成人往往缺乏这种勇气。相反,成人可能会用虚伪、虚情假意来掩饰自己。不仅如此,有时为了“思想教育”的需要,我们还在教育着我们的孩子学会说假话,鼓励他们说假话。他们慢慢知道了:说真话有时不和时宜,会受到训斥,而随声附和老师的意思还会受到老师的表扬。多么可怕的教育!没有真诚的教育怎能培养出健康人的品格。
案例2中,教师在数学教学中为了激发学生的民族自豪感,进行爱国主义思想教育,难道非得让孩子们说出来吗?另人质疑的是这位教师上的究竟是数学课呢?还是思想品德教育课?那种在教学环节上追求简单的“嵌入”式或“贴标签”式的教学方式;那种牵强附会地把思想教育硬“扯”到教学内容中去的方法,我认为都是不可取的。那样只会助长了学生说空话,说违心话的坏习惯,最终使得数学教学与思想品德教育落得两败俱伤的境地。我认为数学教学最重要的是对学生渗透辨证唯物主义的启蒙教育,在课堂教学过程中,教师应重在培养学生认真严肃、一丝不苟、严谨求实的学习态度和积极思维的良好的习惯。
综观前两个案例,与案例3中的教师进行对比,不难看出最后这位教师做的恰到好处。使得思想教育与教学内容紧密结合,做到顺其自然,不做作,不把品德教育强塞给学生,注意适时适度,学生乐于接受,达到了即教书又育人的良好效果!
数学小故事5
一个叫小米的男孩经常给别人带来好运。他喜欢数学,特别喜欢整数。有一次,他和几个同学去公园玩。在路上,他发现地上有一堆掉落的钱,一共有27个硬币。他的几个同学想把这堆钱分成几份,但他们不清楚钱要怎么合理的分。小米想了一会儿,用他的`数学把27个硬币分成了9份每份3个。大家都很高兴,感谢小米的数学技能给他们带来了帮助!
一个叫汉娜的四年级学生,很喜欢数学。每次上课都专心致志,总是把课上的知识掌握得很好。
有一天,汉娜老师带来了一堆彩色点子。老师让汉娜和其他同学求出每一堆点子的总数。汉娜立刻兴奋起来,她一下子就求出了所有点子的数量,引起了其他同学的惊叹。老师很欣慰,这时,汉娜的脸上发出令人赞叹的笑容。
数学小故事6
啊1,开口数数,首先数到的便是你。你是最基本的数量单位。只要有了你,进行运算就能得到一系列数,你用加法可得到任意自然数,你用加减法可得到任意整数,你用加减乘除四则运算可得到任意有理数,你用六种基本的代数运算可得到任意实数。你能衍生一切,你是数字的本源,万事的开端,高楼的基底,希望的萌芽,大千世界不就是由无数个一草一木,一山一水,一人一物,一时一秒,一滴水,一把土等聚集而成的吗?没有一人,就组不成人类群体,没有一木就形不成片片绿色森林,没有一星,我们就看不到群星璀灿的夜晚,没有一滴一滴的水珠,就不会有浩瀚无边的大海……
在用数表示量的多少时,你是单位,在用数表示顺序时,你是最前元素,而一个自然数是同时具有“多少”和“顺序”两种意义的。你既是单位,又是最前元素,你是最简单的数,但又能作为某些领域的标准。当我们需要的东西在数量上只有一个时,我们变毫不犹豫地选择,当我们进行任何第一次尝试的时候,我们总是兴奋悠悠。
“多”包含着1,这是显然的,因为任何表示“多”的数都是由你与某些运算构成的,这里你是“多”的一个部分,你包含于“多”中,另外,1是单位,“多”则是若干个单位之和,若采用某整体作单位时,“多”就转化为你。十多亿人口只是“一”个中国;千千万万个H2O分子只是一滴水,许许多多的物品只是一个集合。1000是“多”吧,但如用吨为单位,1000公斤才是“1”吨。1也包含着“多”,如在用较小单位时,你就包含“多”,一片森林,包含千万树木,一片花园,会开出千万枝花朵;一个单位,有几百个职工。1公里不算多,但用毫米作单位,1公里就是1000000毫米,正如恩格斯所说“一和多是不能分离的,相互渗透的两个概念,而且多包含于一中,正如一包含于多中一样。”
啊1,你可以用多种形式表示,多一种形式,都意味着产生你的方式。被除数与除数相等的商是多少?不为零的任何实数的零次幂是多少?底数的对数是多少?全取组合数的值是多少?偶素数又有多少?它们都是1,是你的灵魂的各种显现。
1啊,有多少恒等式,方程式的右端是你哟。不论角度X是多少度,总有sin2x+cos2x ?=1,只要n趋于无穷无穷大,1/2+1/4+1/8+1/16…+…=1,只要x2/a2+y2/b2=1,点A(x,y)就会沿着椭圆的轨道运行。数学中有了你,才使数学令人着迷,一道运算题的结果若是你,人们便立即欣赏感叹。你在数学中太重要了,有许多数列的极限是你,你的任何实数幂仍然是你,你同任何数相乘仍为任何数,你除以任何数还是任何数,任何数(除零外)除你就变成它的倒数。在许多运算中,你是变换的桥梁,简洁算法的'关键,逻辑推理的灵魂,有了你五彩缤纷的变化,也就有了数学那丰富多彩的内容。
1,你又是对数系统的界限,当底数大于你时,一切大于你的数的对数是负数,当底数小于你时,又恰恰相反。而以任何意义所允许的数为底,你的对数都是零。在解析几何中,你是圆锥曲线分类的标准,据离心率大于等于或小于1,分别是双曲线,抛物线和椭圆。在三角函数中,正弦函数,余弦函数的最大值是你,最小数是你的相反数,啊1,你有时是那样地高高在上,遇到你也就达到正余弦函数值的最高峰了。
啊1,你太小了,太少了,再没有什么东西看起来比你这个数量单位更简单了,但是,只要把你和相应的多联系起来,并且按照你从相应的多中产生出来的各种方式加以研究,我们就会知道,再没有什么比你更多样化了。由你到多构成了一个完美无缺的整体,美就是你的永恒的光辉,透过物质现象的朦胧显现。啊1,我们赞美你!
数学小故事7
数学家杨辉的小故事
说起杨辉的这一成就,还得从偶然的一件小事说起。
一天,台州府的地方官杨辉出外巡游,路上,前面铜锣开道,后面衙役殿后,中间,大轿抬起,好不威风。迷人的春天慷慨地散布着芳香的气息,带来了生活的欢乐和幸福。杜鹃隐藏在芒果树的枝头。用它那圆润、甜蜜、动人心弦的鸣啭来唤醒人们的希望。成群的画眉鸟像迎亲似的蹲在树的枝丫上,发出婉丽的啼声。楝树、花梨树和栗树都仿佛被自身的芬芳熏醉了。杨辉撩起轿帘,看那杂花生树,飞鸟穿林,真乃春色怡人淡复浓,唤侣黄鹂弄晓风。更是一年好景,旖旎风光。走着、走着,只见开道的镗锣停了下来,前面传来孩童的大声喊叫声,接着是衙役恶狠狠的训斥声。杨辉忙问怎么回事,差人来报:“孩童不让过,说等他把题目算完后才让走,要不就绕道。”杨辉一看来了兴趣,连忙下轿抬步,来到前面。衙役急忙说:“是不是把这孩童哄走?”杨辉摸着孩童头说:“为何不让本官从此处经过?”孩童答道:“不是不让经过,我是怕你们把我的算式踩掉,我又想不起来了。”“什么算式?”“就是把1到9的数字分三行排列,不论直着加,横着加,还是斜着加,结果都是等于15。我们先生让下午一定要把这道题做好。我正算到关键之处。”杨辉连忙蹲下身,仔细地看那孩童的算式,觉得这个数字,从哪见过,仔细一想,原来是西汉学者戴德编纂的《大戴礼》书中所写的文章中提及的。杨辉和孩童俩人连忙一起算了起来,直到天已过午,俩人才舒了一口气,结果出来了,他们又验算了一下,觉得结果全是15,这才站了起来。我们把算式摆出来:(在左边的方块中,无论你横、竖、斜着加结果都是15。请试一下)孩童望着这位慈祥和善的地方官说:“耽搁你的时间了,到我家吃饭吧!”杨辉一听,说:“好,好,下午我也去见见你先生。”孩童望着杨辉,泪眼汪汪,杨辉心想,这里肯定有什么蹊跷,温和地问道:“到底是怎么回事?”孩童这才一五一十把原因道出:原来这孩童并未上学,家中穷得连饭都吃不饱,哪有钱读书。而这孩童给地主家放牛,每到学生上学时,他就偷偷地躲在学生的窗下偷听,今天上午先生出了这道题,这孩童用心自学,终于把它解决了。杨辉听到此,感动万分,一个小小的孩童,竟有这番苦心,实在不易。便对孩童说:“这是10两银子,你拿回家去吧。下午你到学校去,我在那儿等你。”下午,杨辉带着孩童找到先生,把这孩童的情况向先生说了一遍,又掏出银两,给孩童补了名额,孩童一家感激不尽。
自此,这孩童方才有了真正的先生。教书先生对杨辉的清廉为人非常敬佩,于是俩人谈论起数学。杨辉说道:“方才我和孩童做的那道题好像是《大戴礼》书中的?”那先生笑着说:“是啊,《大戴礼》虽然是一部记载各种礼仪制度的文集,但其中也包含着一定的数学知识。方才你说的题目,就是我给孩子们出的数学游戏题。”教书先生看到杨辉疑惑的神情,又说道:“南北朝的甄鸾在《数术记遗》一书中就写过:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。”杨辉默念一遍,发现他说的正与上午他和孩童摆的数字一样,便问道:“你可知道这个九宫图是如何造出来的?”教书先生也不知出处。
杨辉回到家中,反复琢磨,一有空闲就在桌上摆弄着这些数字,终于发现一条规律。他把这条规律总结成四句话:九子斜排,上下对易,左右相更,四维挺出”。就是说:一开始将九个数字从大到小斜排三行,然后将9和1对换,左边7和右边3对换,最后将位于四角的4、2、6、8分别向外移动,排成纵横三行,就构成了九宫图。下面我们演示一下:(九子斜排)(上下对易,左右相更)(四维挺出)按照类似的规律,杨辉又得到了“花16图”,就是从1到16的数字排列在四行四列的方格中,使每一横行、纵行、斜行四数之和均为34。
后来,杨辉又将散见于前人著作和流传于民间的有关这类问题加以整理,得到了“五五图”、“六六图”、“衍数图”、“易数图”、“九九图”、“百子图”等许多类似的图。杨辉把这些图总称为纵横图,并于1275年写进自己的数学著作《续古摘奇算法》一书中,并流传后世。纵横图,也叫幻方,它要求把从1到n2个连续的自然数安置在n2个格子理。但长期以来,人们习惯于把它当作纯粹的数学游戏,没有给予应有重视。随着近代组合数学的发展,纵横图显示了越来越强大的生命力,在图论、组合分析、对策论、计算机科学等领域中,找到了用武之地。杨辉可以说是世界上第一个给出了如此丰富的纵横图和讨论了其构成规律的数学家。
杨辉除此成就之外,还有一项重大贡献,就是“杨辉三角”。有一次,杨辉得到一本《黄帝九章算法细草》,这是北宋数家贾宪写的.。这里面有不少了不起的成就,如贾宪描画了一张图,叫作“开方作法本源图”。图中的数字排列成一个大三角形,位于两腰上的数字均是1,其余数字则等于它上面两数字之和。从第二行开始,这个大三角形的每行数字,都对应于一组二项展开式的系数,下面试举例说明:在第三行中,1、3、3、1,这4个数字恰好是对应于(X+1)3=X3+3X2+3X+1;再如第四行对应于(X+1)4=X4+4X3+6X2+4X+1。以此类推。杨辉把贾宪的这张画忠实地记录下来,并保存在自己的《详解九章算术》一书中。
后来人们发现,这个大三角形不仅可以用来开方和解方程,而且与组合、高阶等差级数、内插法等数学知识都有密切关系。在西方,直到16世纪才有人在一本书的封面上绘出类似的图形。法国数学家巴斯加在1654年的论文中详细地讨论了这个图形的性质,所以在西方又称“巴斯加三角”。
杨辉除上述成就外,还分别写了《日用算法》、《乘除通变本末》和《田亩比类乘除捷法》等书,这为后世的人们了解当时的数学面貌提供了极为重要的资料。杨辉的几部著作极大地丰富了我国古代数学宝库,为数学科学的发展做出了卓越的贡献,他不愧为“宋元四大家”之一。
数学小故事8
祖冲之
祖冲之(429—500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他个性爱好研究数学,也钟爱研究天文历法,经常观测太阳和星球运行的状况,并且做了详细记录。
宋孝武帝听到他的名气,派他到一个专门研究学术的.官署“华林学省”工作。他对做官并没有兴趣,但是在那里,能够更加专心研究数学、天文了。
我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时刻)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。(企业标语大全)
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不就应改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不好拿空话吓唬人嘛。”宋孝武帝想帮忙戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他以前对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3。1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天能够航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
数学小故事9
1、陈景润:
陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。
理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。
他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗?
2、高斯:
高斯在哥廷根大学时,有次有事迟到,赶到教室时几乎都已经下课了。高斯走进教室后,发现教师不在,黑板上写着几道题。高斯以为这些题目是今天的作业题,便把题目记下来。当晚,他花了一整夜时间去研究这些数学题,没想到的是,这些题目异乎寻常地难。高斯直到天亮也只解决了一道题,第二天他很沮丧地找到老师,把这些都告诉了他。
他的老师异常震惊:“这些可都是数学史上最著名的难题啊,你竟然只花一个晚上就解决了一道?”而高斯解决的这道难题,就是困扰了数学家两千年之久的正十七边形尺规作图问题。那一年,高斯只有19岁!
3、华罗庚:
有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的`是棉花的价格,尖叫道:“怎么这么贵?”。
这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”。
那妇女生气地说:“这可是我花钱买的,可不是你送的”。华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……
4、拉格朗日:
拉格朗日(1736—1813),法国著名的数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之希望、欧洲最伟大的数学家”的赞誉。
拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。
直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。
5、祖冲之:
祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方. 晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究.在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。
在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误.以后他继续钻研,在科学技术方面作出极有价值的贡献.精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一.在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证.他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误.因此他便开始编制另一种新的历法。
数学小故事10
“悖论”这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论。那些结论会使我们惊讶无比。悖论主要有三种形式:1.一种论断看起来好象肯定错了,实际上却是对的(佯谬);2.一种论断看起来好象肯定对了,实际上却错了(似是而非);3.一系列理论看起来好象无懈可击,却导致了逻辑上自相矛盾。
悖论有点象变戏法,人们看完以后,几乎没有一个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他后,他便不知不觉地被引进深奥而有趣的数学世界中。
著名的《科学美国人》杂志社编的《数学悖论奇景》中,有不少生动而奇妙的题目,下面几则便选自其中。有的题目作了简略的分析,有的只提出问题,留侍读者去思索。
1.唐·吉诃德悖论
小说《唐·吉诃德》里描写过一个国家,它有一条奇怪的法律,每个旅游者都要回答一个问题:“你来这里做什么?”回答对了,一切都好办;回答错了,就要被绞死。
一天,有个旅游者回答:“我来这里是要被绞死。”
旅游者被送到国王那里。国王苦苦想了好久:他回答得是对还是错?究竟要不要把他绞死。如果说他回答得对,那就不要绞死他——可这样一来,他的回答又成了错的了!如果说他回答错了,那就要绞死他——但这恰恰又证明他回答对了。实在是左右为难!
2.梵学者的预言
一天,梵学者与他的女儿苏耶发生了争论。
苏椰:你是一个大骗子,爸爸。你根本不能预言未来。
学者:我肯定能。
苏椰:不,你不能。我现在就可以证明它!
苏椰在一张纸上写了一些字,折起来,压在水晶球下。她说:
“我写了一件事,它在3点钟前可能发生,也可能不发生。请你预言它究竟是不是会发生,在这张白卡片上写下‘是’字或‘不’字。要是你写错了,你答应现在就买辆汽车给我,不要拖到以后好吗?”
“好,一言为定。”学者在卡片上写了一个字。
3点钟时,苏椰把水晶球下面的纸拿出来,高声读道:“在下午3点以前,你将写一个‘不’字在卡片上。”
学者在卡片上写的是“是”字,他预言错了:“在下午3点以前,写一个‘不’字在卡片上”这一件事并未发生。但如果他在卡片上写的是“不”呢?也还错!因为写“不”就表示他预言卡片上的事不会发生,但它恰恰发生了——他在卡片上写的就是一个‘不’字。
苏椰笑了:“我想要一辆红色的赛车,爸爸,要带斗形座的。”
3.意想不到的老虎
公主要和迈克结婚,国王提出一个条件:
“我亲爱的,如果迈克打死这五个门后藏着的一只老虎,你就可以和他结婚。迈克必须顺次序开门,从1号门开始。他事先不知道哪个房间里有老虎,只有开了那扇门才知道。这只老虎的出现将是料想不到的。”
迈克看着这些门,对自己说道:
“如果我打开了四个空房间的门,我就会知道老虎在第五个房间。可是,国王说我不能事先知道它在哪里,所以老虎不可能在第五个房间。”
“五被排除了,所以老虎必然在前四个房间内。同样的推理,老虎也不会在最后一个房间——第四间内。”
按同样的理由推下去,迈克证明老虎不能在第三、第二和第一个房间。迈克十分快乐,他满怀信心地去看门。使他惊骇的是,老虎从第二个房间跳了出来。
迈克的推理并没有错,但他失败了。老虎的出现完全出乎意料,表明国王遵守了他的诺言。也许,迈克进行推理的本身就与国王关于老虎“料想不到”的条件发生了矛盾。迄今为止,逻辑学家对于迈克究竟错在哪里还末得到一致意见。
4.钱包游戏
史密斯教授和两个学生一道吃午饭。教授说:“我来告诉你们一个新游戏。把你们的钱包放在桌子上,我来数里面的钱。钱少的人可以赢掉另一个钱包中的所有钱。”
学生甲想:“如果我的钱多,就会输掉我这些钱;如果他的多,我就会赢多于我的钱。所以赢的要比输的多,这个游戏对我有利。”
同样的道理,学生乙也认为这个游戏对他有利。
请问,一个游戏怎么会对双方都有利呢?
5.一块钱哪儿去了?
一个唱片商店里,卖30张老式硬唱片,一块钱两张;另外30张软唱片是一块钱三张。那天,这60张唱片卖光了。30张硬唱片收入15元,30张软唱片收入10元,总共是25元。
第二天,老板又拿出60张唱片。他想:“如果30张唱片是一块钱卖两张,30张是一块钱卖三张,何不放在一起,两块钱卖5张呢?”这一天,60张唱片全按两块钱5张卖出去了。老板点钱时才发现,只卖得24元,而不是25元。
这一块钱到哪儿去了呢?
6.惊人的编码
外星的一位科学家基塔先生,来到地球收集人类的资料,遇到了赫尔曼博士。
赫尔曼:“你何不带一套大英百科全书回去?这套书最全面地汇总了我们的所有知识。”
基塔:“可惜,我带不走那么重的东西。不过,我可以把整套百科全书编码,然后只要在这根金属棒上作个标记,就代表了百科全书中的全部信息。”真是再简单不过了!
基塔先生是怎样做到的呢?
基塔:“我先把每个字母、数字、符号,都用一个数来代表,零用来隔开它们。例如cat一词就编为3-0-1-0-22。我用高级袖珍计算机快速扫描,就能把百科全书的全部内容转变为一个庞大的数字。前面加一个小数点,就使它变成了一个十进制的分数,例如0.2015015011……
基塔先生在金属棒上找到了一个点,这个点将棒分为a和b两段,而a/b刚好等于上面那个十进制分数值。
基塔:“回去后,测出a和b的值,就求出了它们的比值;根据编码的'规定,你们的百科全书就被破译出来了。”
这样,基塔离开地球时只带了一根金属棒,而他却已“满载而归”了!
7.不可逃遁的点
帕特先生沿着一条小路上山。他早晨七点动身,当晚七点到达山顶。第二天早晨沿同一小路下,晚上七点又回到山脚,遇见了拓扑学老师克莱因。
克莱因:“帕特,你可曾知道你今天下山时走过这样一个地点,你通过这点的时刻恰好与你昨天上山时通过这点的时刻完全相同?”
帕特:“这绝不可能!我走路时快时慢,有时还停下来休息。”
克莱因:“当你开始下山时,设想你有一个替身同时开始登山,这个替身登山的过程同你昨天登山时完全相同。你和这个替身必定要相遇。我不能断定你们在哪一点相遇,但一定会有这样一点。……”
帕特明白了。你明白了吗?
8.橡皮绳上的蠕虫
橡皮绳长1公里,一条蠕虫在它的一端。蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行;而橡皮绳每过1秒钟就拉长1公里。如此下去,蠕虫最后究竟会不会到达终点呢?
乍一想,随着橡皮绳的拉伸,蠕虫离终点越来越远了。但细心的读者会想到:随着橡皮绳的每次拉伸,蠕虫也向前挪了。
如果用数学公式表示,蠕虫在第n秒未在橡皮绳上的位置,表示为整条绳的分数就是(推导过程从略):
当n足够大(约为e100000)时,上式的值就超过了1,也就是说蠕虫爬到了终点。
9.棘手的电灯
一盏电灯,用按钮来开关。假定把灯拧开一分钟,然后关掉半分钟,再拧开1/4分钟,再关掉1/8分钟,如此往复,这一过程的末了恰好是两分钟。
那么,在这一过程结束时,电灯是开着,还是关着?这个问题实在是难!
10、罗素悖论
一天,一个理发师挂出了一块招牌:“村里所有不自己理发的人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。因为如果他给自己理发,那么他就属于自己给自己理发的那一类。但是,招牌上说明他不给这类理发,因此他不能自己理发。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上说明他要给所有不自己理发的人理发,因此他应该自己理。由此可见,不管做怎样的推论,理发师所说的话总是自相矛盾的。这是一个著名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。 1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为他们的基础。到19世纪末,全部数学几乎都建立在集合论是基础上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年“罗素悖论”的提出,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的变革。
11、上帝不是万能的
用反证法证明 证明:假设上帝是万能的,那么上帝能造出一块他自己都举不起来的石头, 否则上帝就不是万能的;但是上帝又举不起这块石头,因此上帝不是万能的,这与假设矛盾;所以原假设不成立,即上帝不是万能的
数学小故事11
傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的'3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥。请问:果园里有苹果树和梨树各多少棵?
我没有被这道题吓倒,难题能激发我的兴趣。我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥。
而实际他每天只给50棵苹果树施肥,差了10棵,最后共差了80棵,从这里可以得知,老王师傅已经施了8天肥。一天20棵梨树,8天就是160棵梨树,再根据第一个条件,可以知道苹果树是480棵。这就是用假设的思路来解题,因此我想,假设法实在是一种很好的解题方法。
数学小故事12
艾米·诺特,德国女数学家,1882年3月23日生于德国大学城爱尔兰根的一个犹太人家庭。她的研究领域为抽象代数,她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。她彻底改变了环、域和代数的理论。她还被称为“现代数学之母”,她允许学者们无条件地使用她的工作成果,也因此被人们尊称为“当代数学文章的合著者”。
诺特生活在公开歧视妇女发挥数学才能的制度下,她通往成功的道路,比别人更加艰难曲折。当诺特考进了爱尔朗根大学,由于性别歧视,女生不能注册,但她依然大大方方地坐在教室前排,认真听课,刻苦地学习。后来,她勤奋好学的精神感动了主讲教授,破例允许她与男生一样参加考试。毕业的这年冬天,她来到著名的`哥廷根大学,旁听了希尔伯特、克莱因、闵可夫斯基等数学大师的讲课,感到大开眼界,大受鼓舞,益发坚定了献身数学研究的决心。博士毕业后,她在著名的数学家高丹、费叶尔的指引下,数学的不变式领域作了深入的研究。不到两年时间,她就发表了两篇重要论文。在一篇论文里,诺特为爱因斯坦的广义相对论给出了一种纯数学的严格方法;而另一篇论文有关“诺特定理”的观点,已成为现代物理学中的基本问题。此后,诺特走上了完全独立的数学道路。 1921 年,她从不同领域的相似现象出发,把不同的对象加以抽象化、公理化,然后用统一的方法加以处理,完成了《环中的理想论》这篇重要论文。这是一项非常了不起的数学创造,它标志着抽象代数学真正成为一门数学分支,或者说标志着这门数学分支现代化的开端。诺特也因此获得了极大的声誉,被誉为是“现代数学代数化的伟大先行者”,“抽象代数之母”。
数学小故事13
在这多姿多彩的生活里,充满的数学无处不在,就像:买东西,分东西,谈价格,物品打折......等等,今天,我就发生了数学中,谈价格的数学问题。
“姐,我好饿。咱家有什么吃的?”“要不你去超市买点吃的吧!”一听到去买东西,我就有点发愁,因为现在超市,便利店都很少开门的。“去我包里拿20元吧!不够的话,再拿10块,花余的'在哪来。”“哦哦。”我兴高采烈的骑着我的自行车,出发了。叮叮.....
到了王珂超市,幸好开门,我要大采购了。进去一看,我能吃的只有方便面.膜片.锅巴了,方便面不能吃多,干脆只买2包吧!我有一张方便面有优惠卡,买一包,送一包,但只能用一次,所以,我就有了3包香脆方便面。已经用了2元了,再买两包膜片,一包2元,锅巴一包3元。2+2×2+3=9(元)。再去便利店看看吧!(因为开门)这家,除了买的,还有零食。要不买点零食,吃不完,以后吃。虾味条一包1元,就这样吧!9+1=10(元)正好10元。一算账,回家吃东西喽!
是哎!数学是奇妙的,只要你发现......
数学小故事14
我与数学之间像有一道情缘,连系着我们彼此;像有一条丝绸,绑着我们的心灵;像是一棵大树,它呵护着我一点点长大,我和它的故事更是不计其数。
小时候,还不到两岁,妈妈就陪我认数字,那时,我经常把6当成9,把1念做7,现在想起来,我就会情不自禁的哈哈大笑,到了三岁半就开始学10以内的加减法,每天都要做上30——50道,院子里用粉笔写着满满荡荡的算式,有时也会厌倦,但只要妈妈一摸我的头,我就会像只饥饿的狮子一样,用最快的速度做完全部。久而久之,我就练到了熟能生巧的地步。
上幼儿园时,老师一说要写算式,同学们的眉头就像被锁住了一样,而我却像只高兴的小猫咪“喵喵”的叫着。写作业时,同学们都捉耳挠腮,眉头紧锁,满头大汗,生怕一不留神,就会掉入洞穴,被魔鬼吞食似的,我在背地里偷偷的笑,不到五分钟,我便把作业写完了,得了100加红旗,其他的同学都没有做完,眼巴巴的看着我被老师表扬一次又一次。同学们羡慕极了,有的同学甚至对我有了嫉妒,恨我恨的咬牙切齿,但老师却还没有停止对我的表扬,经常夸我数字写的漂亮,算式算的.又快又准,这让我的心里像灌了蜜一样甜。同学们也心服口服的称我为“数学天才”。
转眼间,我便上了小学。刚开始,爸爸妈妈有些担心我学不好,因为,刚上小学,毕竟有些不适应,又何况知识也在越来越难。于是,爸爸买卷子让我做,妈妈则帮我补习功课。但我的学习就像在幼儿园时,而且比在幼儿园还要好,做作业对我来说还是小菜一碟,不仅做得快,并且正确率高,一得到老师的表扬,我便想:我一定要加倍努力,不能辜负老师和同学们的期望,但那次考试,我因为大意而没有得到100分,我哭了,真想找个地洞钻进去,我辜负了老师,对不起家长和同学,我觉得非常羞愧,从那以后,我改掉了缺点,期终考试时,我数学考试得了100分,我像只高兴极了的小狗,一会儿跑来跑去,一会儿欢呼雀跃,一会儿又笑逐颜开。这次考试,我又总结了一个经验:做题千万不能马虎大意,要细心认真。
数学,伟大的数学啊!我坚信这伟大的数学会给我奇妙的快乐与自豪。
数学小故事15
春天来了,森林里到处弥漫着芳草的清香,花儿迫不及待的张开了笑脸,迎接着万物复苏的世界,各种动物们仿佛一夜之间从冬眠中苏醒过来,它们伸着懒腰,打着哈欠,懒洋洋得活动着筋骨,蛰伏了一个冬天,身体都有些僵硬啦!再不活动活动都要变成懒虫咯!于是一只机灵的松鼠向森林之王狮子建议;咱们开个运动会怎样?一来能强生健体、二来能施展技能,最重要的是让大伙焕发春天一般的生机,打起精神迎接新一年的挑战。小猴自告奋勇,它一向动作敏捷,略一思索便有主意:我们可以把20只小兔子平均分成2组:一组跳绳、一组跑步;再把20只小山羊平均分成2组:一组跳绳、一组跑步。这样一场别开生面的运动会就油然而生啦!请问一共有多少小动物参加比赛?其中参加跳绳比赛的有多少?参加跑步比赛的`有多少? 答:一共有20+20=40(只)或2*20=40(只) 跳绳的有10*2=20(只)跑步的有10*2=20(只)
【数学小故事】相关文章:
数学小故事06-02
数学小故事03-11
趣味数学小故事12-18
有趣的数学小故事05-31
趣味数学小故事06-02
【热】数学小故事03-12
数学小故事[热门]06-02
数学小故事【热门】08-12
关于数学的小故事07-05
数学小故事25个10-09