指数函数教学设计

时间:2024-12-23 17:10:08 晓丽 教学设计 我要投稿
  • 相关推荐

指数函数教学设计(精选12篇)

  作为一名无私奉献的老师,时常需要准备好教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么你有了解过教学设计吗?以下是小编整理的指数函数教学设计,希望对大家有所帮助。

指数函数教学设计(精选12篇)

  指数函数教学设计 1

  教学目标:

  1.进一步理解指数函数的性质;

  2.能较熟练地运用指数函数的性质解决指数函数的平移问题。

  教学重点:

  指数函数的性质的应用。

  教学难点:

  指数函数图象的平移变换。

  教学过程:

  一、情境创设

  1.复习指数函数的概念、图象和性质

  练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为。若a1,则当x0时,y1;而当x0时,y1。若00时,y1;而当x0时,y1。

  2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?

  二、数学应用与建构

  例1解不等式:

  小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围。

  例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

  小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移)。

  练习:

  (1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象。

  (2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象。

  (3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的`解析式是。

  (4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是。函数y=a2x-1的图象恒过的定点的坐标是。

  小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口。

  (5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

  (6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

  小结:函数图象的对称变换规律。

  例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象。

  例4求函数的最小值以及取得最小值时的x值。

  小结:复合函数常常需要换元来求解其最值。

  练习:

  (1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;

  (2)函数y=2x的值域为;

  (3)设a0且a1,如果y=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;

  (4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围。

  三、小结

  1.指数函数的性质及应用;

  2.指数型函数的定点问题;

  3.指数型函数的草图及其变换规律。

  四、作业:

  课本P55-6,7。

  五、课后探究

  (1)函数f(x)的定义域为(0,1),则函数的定义域为。

  (2)对于任意的x1,x2R,若函数f(x)=2x,试比较的大小。

  指数函数教学设计 2

  教学目标:

  进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

  教学重点:

  用指数函数模型解决实际问题。

  教学难点:

  指数函数模型的建构。

  教学过程:

  一、情境创设

  某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为万元,后年的产值为万元、若设x年后实现产值翻两番,则得方程。

  二、数学建构

  指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等。

  递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

  三、数学应用

  例1某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

  例2某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数=f(t)的解析式。

  例3某位公民按定期三年,年利率为2.70%的方式把5000元存入银行、问三年后这位公民所得利息是多少元?

  例4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

  (1)写出本利和随存期x变化的函数关系式;

  (2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

  (复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

  小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算、这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的`利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式、比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b、这就是复利计算方式。

  例520xx~20xx年,我国国内生产总值年平均增长7.8%左右、按照这个增长速度,画出从20xx年开始我国年国内生产总值随时间变化的图象,并通过图象观察到20xx年我国年国内生产总值约为20xx年的多少倍(结果取整数)。

  练习:

  1、(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;

  (2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式。

  2、某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个。

  3、我国工农业总产值计划从20xx年到20xx年翻两番,设平均每年增长率为x,则得方程。

  四、小结:

  1、指数函数模型的建立;

  2、单利与复利;

  3、用图象近似求解。

  五、作业:

  课本P71-10,16题。

  指数函数教学设计 3

  一、教材分析

  (一)教材的地位和作用

  本课时主要学习指数函数的图像和性质概念,通过指数函数图像的研究归纳其性质。“指数函数”是函数中的一个重要基本初等函数,是后续知识——对数函数(指数函数的反函数)的准备知识。本节课的重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。通过这部分知识的学习进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识并体会研究函数较为完整的思维方法,此外还可类比学习后面的其它函数。

  (二)教学目标

  知识维度:初中已经学习了正比例函数、反比例函数和一次函数,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  能力维度:学生利用描点法画出函数的图像,并描述出函数的图像特征,能够为研究指数函数的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

  1、知识与技能目标:

  (1)掌握指数函数的概念(能理解对a的限定以及自变量的取值可推广至实数范围);

  (2)会做指数函数的图像;

  (3)能初步把握指数函数的图像,性质及其简单应用。

  2、过程与方法目标:

  通过由指数函数的图像归纳其性质的学习过程,由图像研究指数函数的性质。利用性质解决实际问题,培养学生探究、归纳分析问题的'能力。

  3、情感态度与价值观目标:

  (1)在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题。

  (2)通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。

  (三)教学重点和难点

  教学重点:指数函数的图象和性质。

  教学难点:指数函数的图象性质与底数a的关系。

  教学关键:从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

  课时安排:1课时

  二、学情分析

  学生已有一定的函数基本知识、可建立简单的函数关系,为以函数关系的建立作为本节知识的引入做了知识准备。此外,初中所学有理数范围内的指数相关知识,将已有知识推广至实数范围。在此基础上进入指数函数的学习,并将所学对函数的认识进一步推向系统化。

  三、教法分析

  (一)教学方式

  直接讲授与启发探究相结合

  (二)教学手段

  借助多媒体,展示学生的做图结果;演示指数函数的图像

  四、教学基本思路:

  (一)创设情境,揭示课题。

  1、创设情境。(如何建立一个关于指数函数的数学模型——后续解决)

  2、引入指数函数概念。

  (二)探究新知。

  1、研究指数函数的图象。

  2、归纳总结指数函数的性质。

  (三)巩固深化,发展思维。

  (四)归纳整理,提高认识。

  (五)巩固练习与作业。

  (六)教学设计说明。

  1、抛出生活中的实例,需要建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。

  2、用简单易懂的实例引入指数函数概念,体会由特殊到一般的思想。

  3、探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过研究几个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。

  4、进行一些巩固练习从而能对函数进行较为基本的应用。

  指数函数教学设计 4

  一、教学类型

  新知课

  二、教学目标

  1、理解指数函数的定义,初步掌握指数函数的定义域,值域及其奇偶性。

  2、通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

  三、教学重点和难点

  重点:理解指数函数的定义,把握图象和性质。

  难点:认识底数对函数值影响的认识。

  四、教学用具

  投影仪

  五、教学方法

  启发讨论研究式

  六、教学过程

  引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————指数函数。指数函数(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。

  1、定义:形如的函数称为指数函数。(板书)

  教师在给出定义之后再对定义作几点说明。

  2、几点说明(板书)

  (1)关于对的规定:

  (2)关于指数函数的定义域。(板书)

  (3)关于是否是指数函数的判断。(板书)

  刚才分别认识了指数函数中底数,指数的.要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数。学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象。最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

  3、归纳性质。

  七、思考问题,设置悬念

  八、小结

  指数函数教学设计 5

  教学目标

  1、掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

  (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

  (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

  2、通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

  3、通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

  教学建议

  教材分析

  (1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的.基础。

  (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

  (3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

  教法建议

  (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

  (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣。

  指数函数教学设计 6

  一、内容及其解析

  (一)内容:指数函数的性质的应用。

  (二)解析:通过进一步巩固指数函数的图象和性质,掌握由指数函数和其他简单函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。

  二、目标及其解析

  (一)教学目标

  指数函数的图象及其性质的应用。

  (二)解析

  通过进一步掌握指数函数的图象和性质,能够构建指数函数的模型来解决实际问题;体会指数函数在实际生活中的重要作用,感受数学建模在解题中的作用,提高学生分析问题与解决问题的.能力。

  三、问题诊断分析

  解决实际问题本来就是学生的一个难点,并且学生对函数模型也不熟悉,所以在构建函数模型解决实际问题是学生的一个难点,解决的方法就是在实例中让学生加强理解,通过实例让学生感受到如何选择适当的函数模型。

  四、教学过程设计

  探究点一:平移指数函数的图像

  例1:画出函数的图像,并根据图像指出它的单调区间。

  解析:由函数的解析式可得:

  其图像分成两部分,一部分是将(x-1)的图像作出,而它的图像可以看作的图像沿x轴的负方向平移一个单位而得到的,另一部分是将的图像作出,而它的图像可以看作将的图像沿x轴的负方向平移一个单位而得到的。

  解:图像由老师们自己画出

  变式训练一:已知函数

  (1)作出其图像;

  (2)由图像指出其单调区间;

  解:

  (1)的图像如下图:

  (2)函数的增区间是(-,-2],减区间是[-2,+)。

  探究点二:复合函数的性质

  例2:已知函数

  (1)求f(x)的定义域;

  (2)讨论f(x)的奇偶性;

  解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。

  解:

  (1)要使函数有意义,须-1,即x1,所以,定义域为(-,0)(0,+)。

  (2)变式训练二:已知函数,试判断函数的奇偶性;

  简析:∵定义域为,且是奇函数;

  五、小结

  通过本节课的学习,本节课应用了指数函数的性质来解决了什么问题?如何构建指数函数模型,解决生活中的实际问题?

  指数函数教学设计 7

  教学目标

  在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点

  指数函数与对数函数的特性。

  难点

  指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法

  多媒体授课。

  学法指导

  借助列表与图像法。

  教具

  多媒体教学设备。

  教学过程

  一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax(a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的点

  (0,1)

  (1,0)

  单调性

  a>1增函数

  a>1增函数

  0<a<1减函数

  0<a<1减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1,y<0

  0<a<1

  当x>0,0<y<1

  当x>1,y<0

  当x<0,y>1

  当0<x<1,y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax(a>0且a≠1)

  图像

  Y

  y=(1/2)xy=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、y=log1/2x与y=(1/2)x的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)xy=2xy=x

  (0,1)y=log2x

  (1,0)X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的.函数。

  四、利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

  解:∵y=ax中,a=Л>1

  ∴此函数为增函数

  又∵﹣0.1>﹣0.5

  ∴(Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解:∵log67>log66=1

  log76<log77=1

  ∴log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊求y=3√4-x2的定义域和值域。

  解:∵√4-x2有意义,须使4-x2≥0

  即x2≤4|x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4,∴0≤4-x2≤4

  ∴0≤√4-x2≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵0<0.25<1,∴y=log0.25x是减函数

  ∴0<log0.25x≤1

  ∴log0.251<log0.25x≤log0.250.25

  ∴0.25≤x<1,即定义域为[0.25,1)

  六、课堂练习

  求下列函数的定义域

  1.y=8[1/(2x-1)]

  2.y=loga(1-x)2(a>0,且a≠1)

  七、评讲练习

  八、布置作业

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

  指数函数教学设计 8

  教学目标

  1、使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性。

  2、通过函数单调性概念的教学,培养学生分析问题、认识问题的能力。通过例题培养学生利用定义进行推理的逻辑思维能力。

  3、通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育。

  教学重点与难点

  教学重点:函数单调性的概念。

  教学难点:函数单调性的判定。

  教学过程设计

  一、引入新课

  师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?

  (用投影幻灯给出两组函数的图象。)

  第一组:

  第二组:

  生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小。

  师:(手执投影棒使之沿曲线移动)对。他(她)答得很好,这正是两组函数的主要区别。当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小。虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质。我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质。而这些研究结论是直观地由图象得到的。在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容。

  (点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意。)

  二、对概念的分析

  (板书课题:)

  师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍。

  (学生朗读。)

  师:好,请坐。通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

  生:我认为是一致的。定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少。

  师:说得非常正确。定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质。这就是数学的魅力!

  (通过教师的情绪感染学生,激发学生学习数学的兴趣。)

  师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力。

  (指图说明。)

  师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间。

  (教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解。渗透数形结合分析问题的数学思想方法。)

  师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……

  (不把话说完,指一名学生接着说完,让学生的思维始终跟着老师。)

  生:较大的函数值的函数。

  师:那么减函数呢?

  生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数。

  (学生可能回答得不完整,教师应指导他说完整。)

  师:好。我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

  (学生思索。)

  学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环。因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力。

  (教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气。在学生感到无从下手时,给以适当的提示。)

  生:我认为在定义中,有一个词“给定区间”是定义中的关键词语。

  师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同。增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性。请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

  生:不能。因为此时函数值是一个数。

  师:对。函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化。那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

  生:不能。比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数。因而我们不能说y=x2是增函数或是减函数。

  (在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知。)

  师:好。他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”。这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数。因此,今后我们在谈论函数的增减性时必须指明相应的区间。

  师:还有没有其他的关键词语?

  生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语。

  师:你答的很对。能解释一下为什么吗?

  (学生不一定能答全,教师应给予必要的'提示。)

  师:“属于”是什么意思?

  生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取。

  师:如果是闭区间的话,能否取自区间端点?

  生:可以。

  师:那么“任意”和“都有”又如何理解?

  生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2)。

  师:能不能构造一个反例来说明“任意”呢?

  (让学生思考片刻。)

  生:可以构造一个反例。考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了。

  师:那么如何来说明“都有”呢?

  生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数。

  师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性。

  (教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解。在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力。)

  师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小。即一般成立则特殊成立,反之,特殊成立,一般不一定成立。这恰是辩证法中一般和特殊的关系。

  (用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力。)

  三、概念的应用

  例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?

  (用投影幻灯给出图象。)

  生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间。

  生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?

  师:问得好。这说明你想的很仔细,思考问题很严谨。容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减)。反之不然,你能举出反例吗?一般来说。若f(x)在[a,(增或减)。反之不然。

  例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数。

  师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径。

  (指出用定义证明的必要性。)

  师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程。

  (教师巡视,并指定一名中等水平的学生在黑板上板演。学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发。)

  师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立。因此我们可由差的符号来决定两个数的大小关系。

  生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,

  f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

  所以f(x)是增函数。

  师:他的证明思路是清楚的。一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”)。但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号。应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2)。”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”)。最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”)。

  这就是我们用定义证明函数增减性的四个步骤,请同学们记住。需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小。

  (对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势。在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的。)

  调函数吗?并用定义证明你的结论。

  师:你的结论是什么呢?

  上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数。

  生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义。比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数。

  生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数。

  域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数。因此在函数的几个单调增(减)区间之间不要用符号“∪”连接。另外,x=0不是定义域中的元素,此时不要写成闭区间。

  上是减函数。

  (教师巡视。对学生证明中出现的问题给予点拔。可依据学生的问题,给出下面的提示:

  (1)分式问题化简方法一般是通分。

  (2)要说明三个代数式的符号:k,x1·x2,x2-x1。

  要注意在不等式两边同乘以一个负数的时候,不等号方向要改变。

  对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视。)

  四、课堂小结

  师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

  (请一个思路清晰,善于表达的学生口述,教师可从中给予提示。)

  生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤。

  五、作业

  课本P53练习第1,2,3,4题。

  课堂教学设计说明

  是函数的一个重要性质,是研究函数时经常要注意的一个性质。并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用。对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质。学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味。因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理。

  另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点。因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用。

  还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫。

  指数函数教学设计 9

  一、教学内容分析

  本节课是《课程标准实验教科书·1》(北师大版)第三章第三节第三课(3.3.3)指数函数的图像及其性质。根据我所任教的学生的实际情况,将指数函数的图像及其性质划分为两节课(探究图像及其性质,指数函数及其性质的应用),这是第一节课“探究图像及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

  二、学生学习情况分析

  指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。

  三、设计思想

  1.函数及其图像在中占有很重要的位置。如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的。我们知道,函数的表示法有三种:列表法、图像法、解析法,以往函数的学习大多只关注到图像的作用,这其实只是借助了图像的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。

  2.结合《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中实践以下两点:

  (1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

  (2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

  3.通过活动向学生渗透数学思想方法。

  四、教学目标

  根据任教班级学生的实际情况,本节课确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图像;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图像和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

  五、教学重点与难点

  1.教学重点

  指数函数的概念、图像和性质。

  2.教学难点

  对底数的分类,如何由图像、解析式归纳指数函数的性质。

  六、教学过程

  (一)创设情景、提出问题(约3分钟)

  师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少粒米?

  学生回答后公布事先估算的数据:51号同学该准备102粒米,大约5克重。

  师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米?

  [学情设计]

  学生可能说很多或能算出具体数目

  师:大家能否估计一下,51号同学该准备的米有多重?

  教师公布事先估算的数据:51号同学所需准备的约重1.2亿吨。

  师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨。这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!

  [设计意图]

  用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的.对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。

  在以上两个问题中,每位同学所需准备的米粒数用表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?

  学生很容易得出y=2x(x∈N*)和y=2x(x∈N*

  [学情设计]

  学情预设:学生可能会漏掉的取值范围,教师要引导学生思考具体问题中的范围。

  (二)师生互动、探究新知

  1.指数函数的定义

  师:其实,在本章开头的问题2中,也有一个与y=22类似的关系式y=1.073x(x∈N*,x≤20)

  (1)让学生思考讨论以下问题(问题逐个给出):(约3分钟)

  ①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?

  ②它们能否构成函数?

  ③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?

  [设计意图]

  设计意图:引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现y=2x,y=1.073x是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。

  引导学生观察,两个函数中,底数是常数,指数是。

  师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成y=ax的形式。自变量在指数位置,所以我们把它称作指数函数。

  (2)让学生讨论并给出指数函数的定义。(约6分钟)

  对于底数的分类,可将问题分解为:

  ①若a<0会有什么问题?(如a=-2,x则在实数范围内相应的函数值不存在)

  ②若a=0会有什么问题?(对于x≤0,ax都无意义)

  ③若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.)

  师:为了避免上述各种情况的发生,所以规定a>0且a≠1.

  在这里要注意生生之间、师生之间的对话。

  [学情设计]

  ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a>0,且a≠1;a=1为什么不行?

  ②若学生只给出y=ax,教师可以引导学生通过类比一次函数(y=kx+b,k≠0)、反比例函数(,k≠0)、二次函数(y=ax2+bx+c,a≠0)中的限制条件,思考指数函数中底数的限制条件。

  [设计意图]

  ①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;

  ②讨论出a>0,且a≠1,也为下面研究性质时对底数的分类做准备。

  接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如,y=2×3x,y=32x,y=-2x

  [学情设计]

  学生可能只是关注指数是否是变量,而不考虑其他的。

  [设计意图]

  设计意图:加深学生对指数函数定义和呈现形式的理解。

  2.指数函数性质

  (1)提出两个问题(约3分钟)

  ①目前研究函数一般可以包括哪些方面。

  [设计意图]

  让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性)。

  ②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?

  可以从图像和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。

  [设计意图]

  ①让学生知道图像法不是研究函数的唯一方法,由此引导学生可以从图像和解析式(包括列表)不同的角度对函数进行研究;

  ②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。

  (2)分组活动,合作学习(约8分钟)

  师:好,下面我们就从图像和解析式这两个不同的角度对指数函数进行研究。

  ①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图像的角度入手研究指数函数;

  ②每一大组再分为若干合作小组(建议4人一小组);

  ③每组都将研究所得到的结论或成果写出来以便交流。

  [学情设计]

  考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。

  [设计意图]

  通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。

  (3)交流、总结(约10~12分钟)

  师:下面我们开一个成果展示会!

  教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。

  教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?

  师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?例如:过定点(0,1),y=ax与的图像关于y。

  [学情设计]

  ①首先选一从解析式的角度研究的小组上台汇报;

  ②对于从图像的角度研究的,可先选没对底数进行分类的小组上台汇报;

  ③问其他小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图像的变化。

  [设计意图]

  ①函数的表示法有三种:列表法、图像法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图像角度研究只是能直观地看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。

  ②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和,培养其数学素养。

  ③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。

  师:从图像入手我们很容易看出函数的单调性、奇偶性以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。

  教师通过几何画板中改变参数a的值,追踪y=ax的图像,在变化过程中,让全体学生进一步观察指数函数的变化规律。

  师生共同总结指数函数的图像和性质,教师可以边总结边板书。

  (三)巩固训练、提升总结(约8分钟)

  1.例:已知指数函数f(x)=ax(a>0,且a≠1)的图像经过点(3,π),求f(0),f(1),f(-3)的值。

  解:因为f(x)=ax的图像经过点(3,π),所以f(3)=π

  即a3=π,解得,于是。

  所以f(0)=1,f(1),F

  [设计意图]

  通过本题加深学生对指数函数的理解。

  师:根据本题,你能说出确定一个指数函数需要什么条件吗?

  师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。

  [设计意图]

  让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。

  2.练习:(1)在同一平面直角坐标系中画出y=3x和的大致图像,并说出这两个函数的性质;

  (2)求下列函数的定义域:①,②。

  3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?

  [学情设计]

  学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。

  [设计意图]

  ①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。

  ②总结本节课中所用到的数学思想方法。

  ③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。

  4.作业:课本76页习题3,A组第3题。

  七、教学反思

  1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

  2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。

  3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉运用这些数学思想方法去分析、思考问题。

  指数函数教学设计 10

  教学目标:

  1.进一步理解指数函数的性质;

  2.能较熟练地运用指数函数的性质解决指数函数的平移问题;

  教学重点:

  指数函数的性质的应用;

  教学难点:

  指数函数图象的平移变换.

  教学过程:

  一、情境创设

  1.复习指数函数的概念、图象和性质

  练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a1,则当x0时,y 1;而当x0时,y 1.若00时,y 1;而当x0时,y 1.

  2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?

  二、数学应用与建构

  例1 解不等式:

  (1) ; (2) ;

  (3) ; (4) .

  小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的'范围.

  例2 说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

  (1) ; (2) ; (3) ; (4) .

  小结:指数函数的平移规律:y=f(x)左右平移 y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移 y=f(x)+h(当h0时,向上平移,反之向下平移).

  练习:

  (1)将函数f (x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数 的图象.

  (2)将函数f (x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数 的图象.

  (3)将函数 图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是 .

  (4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是 .函数y=a2x-1的图象恒过的定点的坐标是 .

  小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

  (5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

  (6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

  小结:函数图象的对称变换规律.

  例3 已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象.

  例4 求函数 的最小值以及取得最小值时的x值.

  小结:复合函数常常需要换元来求解其最值.

  练习:

  (1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于 ;

  (2)函数y=2x的值域为 ;

  (3)设a0且a1,如果y=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;

  (4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

  三、小结

  1.指数函数的性质及应用;

  2.指数型函数的定点问题;

  3.指数型函数的草图及其变换规律.

  四、作业:

  课本P55-6,7.

  五、课后探究

  (1)函数f(x)的定义域为(0,1),则函数 的定义域为 .

  (2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小.

  指数函数教学设计 11

  教学目标

  1、使学生掌握指数函数的概念,图象和性质、

  (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域、

  (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质、

  (3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象、

  2、通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法、

  3、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣、使学生善于从现实生活中数学的发现问题,解决问题、

  教材分析

  (1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究、

  (2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质、难点是对底数在和时,函数值变化情况的区分、

  (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究、

  教法建议

  (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是指数函数、

  (2)对底数的限制条件的理解与认识也是认识指数函数的重要内容、如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来、

  关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象、

  教学重点和难点

  重点是理解指数函数的定义,把握图象和性质、

  难点是认识底数对函数值影响的认识、

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程

  一、引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————指数函数、

  1、6、指数函数(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要、比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

  由学生回答:与之间的关系式,可以表示为、

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系、

  由学生回答:

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数、

  一、指数函数的概念(板书)

  1、定义:形如的函数称为指数函数、(板书)

  教师在给出定义之后再对定义作几点说明、

  2、几点说明(板书)

  (1)关于对的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在、

  若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要、为了避免上述各种情况的发生,所以规定且、

  (2)关于指数函数的定义域(板书)

  教师引导学生回顾指数范围,发现指数可以取有理数、此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的`有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为、扩充的另一个原因是因为使她它更具代表更有应用价值、

  (3)关于是否是指数函数的判断(板书)

  刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数、

  (1),(2),(3)

  (4),(5)、

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象、

  最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质、

  3、归纳性质

  作图的用什么方法、用列表描点发现,教师准备明确性质,再由学生回答、

  函数

  1、定义域:

  2、值域:

  3、奇偶性:既不是奇函数也不是偶函数

  4、截距:在轴上没有,在轴上为1、

  对于性质1和2可以两条合在一起说,并追问起什么作用、(确定图象存在的大致位置)对第3条还应会证明、对于单调性,我建议找一些特殊点、,先看一看,再下定论、对最后一条也是指导函数图象画图的依据、(图象位于轴上方,且与轴不相交、)

  在此基础上,教师可指导学生列表,描点了、取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少、

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据、连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线、

  二、图象与性质(板书)

  1、图象的画法:性质指导下的列表描点法、

  2、草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例、

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单、即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件、让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象、

  最后问学生是否需要再画、(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征、教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满、

  填好后,让学生仿照此例再列一个的表,将相应的内容填好、为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质、

  3、性质、

  (1)无论为何值,指数函数都有定义域为,值域为,都过点、

  (2)时,在定义域内为增函数,时,为减函数、

  (3)时,、

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质、

  三、简单应用(板书)

  1、利用指数函数单调性比大小、(板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题、首先我们来看下面的问题、

  例1、比较下列各组数的大小

  (1)与;(2)与;

  (3)与1 、(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同、再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小、然后以第(1)题为例,给出解答过程、

  解:在上是增函数,且

  <、(板书)

  教师最后再强调过程必须写清三句话:

  (1)构造函数并指明函数的单调区间及相应的单调性、

  (2)自变量的大小比较、

  (3)函数值的大小比较、

  后两个题的过程略、要求学生仿照第(1)题叙述过程、

  例2、比较下列各组数的大小

  (1)与;(2)与;

  (3)与、(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法、引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决、(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出>1,<1,>、

  解决后由教师小结比较大小的方法

  (1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)

  (2)搭桥比较法:用特殊的数1或0、

  三、巩固练习

  练习:比较下列各组数的大小(板书)

  (1)与(2)与;

  (3)与;(4)与、解答过程略

  四、小结

  1、指数函数的概念

  2、指数函数的图象和性质

  3、简单应用

  指数函数教学设计 12

  一、教学目标:

  1、知识与技能:

  (1) 结合实例,了解正整数指数函数的概念。

  (2)能够求出正整数指数函数的解析式,进一步研究其性质。

  2、 过程与方法:

  (1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法。

  (2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫。

  3、情感。态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心。

  二、教学重点:

  正整数指数函数的定义。教学难点:正整数指数函数的解析式的确定。

  三、学法指导

  学生观察、思考、探究。教学方法:探究交流,讲练结合。

  四、教学过程

  (一)新课导入

  [互动过程1]:

  (1)请你用列表表示1个细胞分裂次数分别

  为1,2,3,4,5,6,7,8时,得到的细胞个数;

  (2)请你用图像表示1个细胞分裂的次数n( )与得到的细

  胞个数y之间的关系;

  (3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用

  科学计算器计算细胞分裂15次、20次得到的.细胞个数。

  解:

  (1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,4,5,6,7,8次后,得到的细胞个数

  分裂次数 1 2 3 4 5 6 7 8

  细胞个数 2 4 8 16 32 64 128 256

  (2)1个细胞分裂的次数 与得到的细胞个数 之间的关系可以用图像表示,它的图像是由一些孤立的点组成

  (3)细胞个数 与分裂次数 之间的关系式为 ,用科学计算器算得 ,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576。

  探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数 随着分裂次数 发生怎样变化?你从哪里看出?

  小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数。 细胞个数 与分裂次数 之间的关系式为 。细胞个数 随着分裂次数 的增多而逐渐增多。

  [互动过程2]:问题2。电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1。

  (1)计算经过20,40,60,80,100年,臭氧含量Q;

  (2)用图像表示每隔20年臭氧含量Q的变化;

  (3)试分析随着时间的增加,臭氧含量Q是增加还是减少。

  解:

  (1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

  (2)用图像表示每隔20年臭氧含量Q的变化如图所

  示,它的图像是由一些孤立的点组成。

  (3)通过计算和观察图形可以知道, 随着时间的增加,臭氧含量Q在逐渐减少。

  探究:从本题中得到的函数来看,自变量和函数值分别

  又是什么?此函数是什么类型的函数?,臭氧含量Q随着

  时间的增加发生怎样变化?你从哪里看出?

  小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数。 臭氧含量Q近似满足关系式Q=0.9975 t, 随着时间的增加,臭氧含量Q在逐渐减少。

  [互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?

  正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中 是自变量,定义域是正整数集 。

  说明:

  1、正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集。

  2、在研究增长问题、复利问题、质量浓度问题中常见这类函数。

  (二)例题:某地现有森林面积为1000 ,每年增长5%,经过 年,森林面积为 。写出 , 间的函数关系式,并求出经过5年,森林的面积。

  分析:要得到 , 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出 , 间的函数关系式。

  解: 根据题意,经过一年, 森林面积为1000(1+5%) ;经过两年, 森林面积为1000(1+5%)2 ;经过三年, 森林面积为1000(1+5%)3 ;所以 与 之间的函数关系式为 ,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2)。

  练习:课本练习1,2

  补充例题:高一某学生家长去年年底到银行存入xx元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?

  解:一个月后他应取回的钱数为y=20xx(1+2.38%),二个月后他应取回的钱数为y=20xx(1+2.38%)2;,三个月后他应取回的钱数为y=20xx(1+2.38%)3, n个月后他应取回的钱数为y=20xx(1+2.38%)n; 所以n与y之间的关系为y=20xx(1+2.38%)n (nN+),一年后他全部取回,他能取回的钱数为y=20xx(1+2.38%)12。

  补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?

  (三)小结:

  1、正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集。

  2、在研究增长问题、复利问题、质量浓度问题中常见这类函数。

  (四)作业:课本习题3—1 1,2,3

【指数函数教学设计】相关文章:

指数函数教学反思12-28

指数函数教学反思10-16

《指数函数及其性质》教学反思(精选10篇)04-09

指数函数的说课稿08-29

指数函数是什么10-09

指数函数求导公式08-04

指数函数及其性质的教学反思(通用8篇)11-05

指数函数教案参考09-02

指数函数说课稿08-28