鸡兔同笼教学反思

时间:2025-01-16 09:39:51 林强 教学反思 我要投稿

鸡兔同笼教学反思(精选20篇)

  作为一名优秀的教师,课堂教学是重要的工作之一,通过教学反思可以有效提升自己的课堂经验,优秀的教学反思都具备一些什么特点呢?下面是小编收集整理的鸡兔同笼教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

鸡兔同笼教学反思(精选20篇)

  鸡兔同笼教学反思 1

  鸡兔同笼问题是我国古代数学名著《孙子算经》中出现的广为流传的数学趣题。教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。

  本节课我依然遵循数学学习的规律,从较简单的问题入手,由易入深,先让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼情况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的变化,脚的数量也跟着变化的规律。通过展开小组讨论,引导学生从表格中找出等量关系式,运用以往学过的方程知识,用方程解决鸡兔同笼的问题。然后采取自学的方法体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或集体的智慧在这里得到展现,最后了解古人的解法“抬腿法”,然孩子感受古人的无限智慧。方程解、假设法对于大部分学生来说至少有一种方法是他自己理解或掌握的。

  在这节课的实际操作中由于我课前准备不够充分,或者驾驭课堂的能力有限,太流程化,没有顾及到每一位学生。胡子眉毛一把抓,没有突出重点。比如孩子们在表演网络解决法事先准备的就不够充分,导致当堂搞砸。在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的情况。由于此处设计的'失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。小组合作学习中我觉得自己调控不到位,如时间的把握、学生合作过程的控制、合作学习的效果等;今后在课堂教学中,我会加强小组合作的建设,让小组合作学习有目标,有过程,有结果。

  反思本节课的教学,在以后的教学中我会扬长避短,不断突破,使教学走上一个新台阶。

  鸡兔同笼教学反思 2

  数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会:

  一、大敢转换情境,提高情境“知名度”。

  生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活” 当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:)

  1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?

  2、12张乒乓球台上同时有34人正进行乒乓球比赛,正在进行单打和双打比赛的球台各有几张?

  类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了,再课件出示《孙子算经》及鸡兔同笼问题,但同时又聪明地把数改小了:今有鸡兔同笼,上有八头,下有二十二足,问鸡兔各几何?一石激起千层浪,鸡兔怎能同笼?学生的探究欲望马上调动起来,这时,又让学生了解“经典”,感受 “经典”。

  二、鼓励参与,在合作中提高学习效率。

  根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,我主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,兵教兵,通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。大部分学生学会了,这是很让我感到激动的,因为毕竟鸡兔同笼问题比较难。

  三、关注每一个学生的发展,提高课堂教学的生成性。

  由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:逐一列表法、取中列表法、假设法、列方程、画图法及古人的砍足法,最后比较哪种算法比较好。这样教学既培养了学生探究能力和小组合作能力,又体现了算法多样化与优化,也让不同的学生在同一节课中都有不同程度地提高。

  总的来说,本节课从学的角度呈现学习内容,合理安排教学过程,提供操作材料,拨动学生心弦,把学习的主动权交给学生,让学生在合作学习的活动中主动完成知识的建构过程。因此,在整堂课中,学生学得兴趣盎然,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的.价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。

  但教学中也存在着很多问题,反思如下:

  1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;

  2、学生汇报时,要多培养学生质疑能力,听不明白的及时向小老师提问,及时解决不懂的问题。

  3、要注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。

  鸡兔同笼教学反思 3

  一节好的数学课应该让学生懂得一个知识点,获得一种思想,积累学习经验,行走在形成某种技能的路上。教学完鸡兔同笼,我留下了这样的感悟。

  鸡兔同笼是六年级数学上册“数学广角”的内容。本节课作为本册教材“数学广角”中唯一的教学内容,它的价值在于它不仅是一道我国民间广为流传的数学趣题,而且它是生活中的一类典型的问题,研究这类题,不仅使学生学习一种数学思想,而且收获解决策略与方法的同时,培养学生的逻辑推理能力。

  研读教材后,我依据新课标,从设计理念到教学目标及重难点的确立都做了认真地思考,连教学环节都是几经修改的',但整个课堂教学效果实在有些汗颜。

  一、“猜测”形同虚设。

  其实,列表法,假设法,方程法解决问题的策略都是同“猜”字而生。猜测是一切发明创造的开始,也是思维的开始。学生应该历经一个猜测----验证----调整---最终找到正确答案的思维成长过程。而我把“猜测”只作为一个课堂环节,一个程序,没有将猜测与后面的环节建立联系,致使“猜测”环节形同虚设。

  另外,在学生猜测后,老师应及时引导学生思考,如果发现猜测不对,腿的总条数多了,该怎样调整;反之,又该怎样调整,其实调整的过程,就是让学生自然而然地发现每一次调整,一个一个地增,或一个一个地减,腿数之间都相差2。这是关键。应该给学生后面的自主探究起到抛砖引玉的作用。同时,也为学生的自探究明确了目标和指明了方向。这样就不会出现后汇报中的“尝试法”的孤立无援了。

  虽然列表尝试法在学生的眼中是一种笨拙的方法。但本节课的列表尝试法是让学生经历由常规逐一举例向减少举例次数的过渡,实现“跳跃式”列举,而且在学生在思考、交流、感悟的数学活动过程中,渐渐地发现其中的规律:“每增加一只鸡同时减少一只兔,就会减少2条腿;反之,每增加一只兔同时减少一只鸡,就会增加2条腿。”学生在这样发现下就很容易找到了“假设法”的影子。为下面的假设法的策略解决问题做了提前渗透和有力地铺垫,同时也能感受到量与量之间的共变关系。然而由于我把尝试法探究活动与寻找其他策略并入一个学习活动中,使得学生只顾去寻找其他的方法,而有的同学直接忽略尝试法,失去了此处探究活动的价值和意义。如果我能分步实施,细化活动要求:活动一、列表尝试,汇报后,再进行活动二:寻找其他策略,就不至于出现汇报中的“混乱”。

  二、数学课上的语言规范性有待加强。

  在数学课堂上,老师不但要有深邃的思想,渊博的知识,娴熟的教学技巧与方法,还要讲究教学语言的准确明晰,具有逻辑性。本堂课假设法算理是一个难点,如果老蚰能用清晰而准确,富有逻辑性的语言把算理引导出来:

  假设笼子里都是鸡,一共有几只脚?条件告诉我们几只脚,这样就少了几只脚呢?为什么会少了10只脚呢?这样就能使学生理解得更清晰更明朗。所以我感到教师的言之有序,才能成就学生的有序思维。

  当我上完了课,我留下了开篇的感悟。由于本课的诸多不足,后面的习题一道也没有练。对这种低效的课堂我有些惭愧,但我想“教后知困”。使我看清了自己努力的方向。“工欲善其事,必先利其器”。看来,在数学教学的这条路上,加强身身的数学修养是教好数学的根本。

  鸡兔同笼教学反思 4

  1、数学教学要通过知识的学习让学生得到思维锻炼,“鸡兔同笼”问题就属于这类问题。在生活中,“鸡兔同笼”的现象很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数它们的脚呢,直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,“鸡兔同笼”问题,是让我们在鸡、兔脚数的变化中,寻找不变的规律,并采用有效的'手段来解决数学问题。

  2、学生是学习的主人,在学习过程中尽可能多地为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。

  3、由于学生原有的认知背景不同,他们对解答此类问题时存在较大的差异。在教学的过程中,不能提出统一要求,要允许不同的学生采用不同的解题方法。在本节,师生共同经历了列表法、假设法等,最后比较哪种算法比较好。这样教学既提高了学生探究能力和小组合作能力,又体现了算法多样化,也让不同的学生在同一节课中都有不同程度的提高。

  鸡兔同笼教学反思 5

  《鸡兔同笼》问题有一定的难度,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。

  《鸡兔同笼》本来就是很抽象的课程,估计学习《鸡兔同笼》可能会有一定的难度。所以也只能按照课本那样的列表法,再配合假设法,充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路:

  出示例题:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,问鸡和兔各有几只?

  师生共同经历了列表方法后,问:能用图形来表示鸡兔头和腿之间的关系吗?

  引导学生画图的方法去试:先画8个圆圈表示8个头,再在每个鸡下面画两条腿,8只鸡有16条腿,还多出10条腿,把剩下的10条腿要给其中的几只鸡添上呢?(5只鸡分别添2条腿)。这5只就是兔子,另外的3只就是鸡。这时候有学生问能把动物都看成是兔吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。

  虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。

  师生共同经历了二种不同的方法:列表法、假设法,让学生自己选择喜欢的方法解决《孙子算经》中的问题。学生很自然地选择假设法,自觉进行方法最优化。因为毕竟鸡兔同笼问题比较难。但教学中也存在着很多问题,反思如下:

  1、学生汇报时,可以多找学生汇报,其他学生可能会听得更明白。

  2、培养学生质疑能力,听不明白的及时向别人提问,及时解决不懂的问题。

  3、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的出现。

  本节课,在整个课堂中,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的`乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。

  但在平时的教学中也存在值得我们进一步思考的问题:

  1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等。

  2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。

  3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。

  鸡兔同笼教学反思 6

  一、教学目标达成的反思

  《数学课程标准》指出数学教学活动必须建立在学生认知发展水平和已有的知识经验之上,以生为本,已学定教,顺学而导,要让学生成为课堂的主人,尊重学生,还课堂给学生,就必须认真钻研教材,领悟编者意图,教材知识地位及前后联系,认真研究学生,了解学生已经知道了哪些知识和解题策略。在最初设计这课时,我把列举法中的表格画在黑板上,让学生根据条件鸡兔共有8只,先猜测鸡兔可能各有几只填入表格中,再根据另外一条件总脚数是26只,通过验证得到笼子里鸡兔到底有几只,但在我巡视时发现大部分学生都在根据条件无序的猜测,有的同学把猜测的过程简单的记录在草稿纸上,有的干脆就不记录,通过不断地调整最终找到了答案,这样就不能形成完整的表格,更不能引导利用表格发现猜测过程中的规律,用时过长且无法自然的过渡到假设法。所以再次试教,我把这一环节及时做了调整,要求学生把猜测的过程记录在课本的表格上,这样大部分学生会按照一定的顺序进行猜测填表,有的同学逐一填表,有的没填第一列和最后一列,有的跳跃填表,还有同学填出答案后不再继续填表,出现了这么多种不同的结果,反映了不同学生的不同思维高度,既达到了列表教学目标。

  二、教学过程执行的反思

  这节课教学过程的主线是:出示问题—分析问题—解决问题—建立模型—推广应用。整个教学过程学生自学与他人交流相结合,老师引导与学生探究相结合,用问题推动学生不断思考,让学生参与知识形成的过程,注重学生亲身体验感受。列表法的优点是方法比较简单,但数据比较大时效率低,不能作为解决鸡兔同笼的一般方法进行推广,是不是在教学过程中可以一带而过呢?通过对教材的研究和分析,绝对不能一带而过,表中蕴含了鸡兔头脚变化的规律,把一只鸡看成一只兔就会增加两只脚,这样就和假设法对应起来了,充分分析表格规律,为假设法的教学奠定了基础,在教学假设法时水到渠成降低了难度。在列表时,学生势必要计算出总脚数,在求总脚数时利用到了方程法的等量关系,列表法是基础是纽带,将不同的解决方法联系起来,形成知识的完整体系。在讲授假设法时,学生最不容易理解4-2=2(条)的意义,试教后决定在充分挖掘表格中的规律,小组合作、师生共同探究的同时,以课件演示为辅助手段,让学生明确假设笼子里全是鸡,这时就比实际少10只脚,少了的脚其实是把兔子看成鸡时兔子少的脚,把一只兔子看成一只鸡少两只脚,所以10里面有几个2就有几只兔子。将学生的认知经验和思维过程转化为数学算式,突破了难点,形成了解决问题的策略,提高学生的思维水平和推理能力。接着又通过拓展练习让学生感觉到数学源于生活,把所学的.数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学就在身边。

  三、课堂教学中的一些不足

  本节课是在试教的基础上基本实现了预定的教学目标,同时存在着很多不足

  1、由于是借班上课,对学情了解不充分,上课时有点紧张,列表法忘了板书,后来又补上的,在平时的教学中应不断提高调控课堂的能力。

  2、在讲授假设法时课件的展示有助学生形象直观的理解,让复杂问题简单化,但却不利于学生抽象思维培养,淡化了数学课的数学味,以后应有选择的使用课件,让课件为教学目标的达成服务。

  3、教学时教学语言平淡,缺乏激情,缺少适时的鼓励评价语言,应及时关注学生的状态和课堂的生成,让学生做课堂的主人。在以后教学中我将不断努力学习,从多方面提高自己,争取尽快成长做一名合格的数学教师。

  鸡兔同笼教学反思 7

  本节课成功的地方:

  首先,对教材分析全面、到位、重点突出,思路清晰。在刚开始教学这节课时,有的学生已经能理解并解释用假设法,来解决问题了,弄懂假设法、画图法等与列表法之间不是孤立的,互不相干的,而恰恰相反,假设法、画图法与列表法一样都是在应用假设的数学思想,它们是相互关联的。

  教材将这一经典、传统的题目“鸡兔同笼”选在数学广角,让学生尝试与猜测,其目的是借助“鸡兔同笼”这个问题作为载体,让学生初步获得一些数学活动经验,引导学生对一些日常生活中的现象进行观察与思考,从而发现一些特殊的规律,体会解决问题的一般策略—列表,即逐一列表法、跳跃列表法和取中列表法。

  其次,注重思维能力的培养和数学思想的'渗透。本节课在教学时,让学生参与观察、猜测、验证等数学活动,发展学生的合情推理和演绎推理能力,让学生用数学语言清晰地表达自己的想法,成为本节课培养学生思维能力的重要途经。从课初的随意猜想,到假设法、列表法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。在教学时,教师有意识地向学生渗透教学思想和方法,如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法,用“列表法、画图法”等解决问题,渗透了假设的方法和思想,这对于学生而言,无疑奠定了可持续发展的基础。

  不足之处及对策:

  本节课的学习,无论是列表法还是假设法,对于四年级的学生来说,都比较抽象,较难理解,所以有部分学生在学习的过程中,做题思路不清晰,还需要经过较长的时间慢慢思考,需要老师不断地进行指导。

  鸡兔同笼教学反思 8

  本节课从学的角度安排教学过程、呈现学习内容,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。让学生获得亲自参与探究学习的积极体验。

  按照我对教材的理解,并遵照《新课程标准》中:

  在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。

  首先以猜一猜的游戏谜语导入,让学生猜出鸡和兔,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;

  然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法的解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;

  接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法。

  最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。

  “鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。

  特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。

  我注重从以下几个方面进行数学文化的渗透:

  一、介绍中国古代的数学成就。

  中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族的自豪感。

  二、渗透解决问题的思想方法。

  数学思想方法是数学文化的精髓,教师有意识地向学生渗透一些基本的数学思想方法,可以加深学生对数学知识的理解,提高学生的思维品质。结合本节课的数学内容,教师适当渗透了化繁为简、猜测验证、假设、数形结合等思想方法,其目的不仅是让学生掌握好本节课的'基础知识和基本技能,更重要的让学生了解一些解决问题的策略,提高解决问题的能力。

  三、注重数学模型的实际应用。

  在数学教学中,从学生已有的生活经验出发,让学生亲身经历讲实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。

  但在平时的教学中也存在值得我们进一步思考的问题:

  1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;

  2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;

  3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。

  鸡兔同笼教学反思 9

  鸡兔同笼问题是我国民间广为流传的数学趣题。最早出现在《孙子算经》中。北师大版五年级上册教材对于这个问题的解题设计,是把列表法作为主要的解题法,但教参中又提到了画图法、假设法、方程法等,提倡算法的多样化,明显要求老师在教学中,这几种方法都要提到。经过对教材的解读和同科组几位老师商讨,觉得这几种方法归根到底都是假设法,画图法和假设法更是同出一辙,一个是直观的假设,另一个是把直观的假设抽象成数字符号表示而已。考虑到方程法学生不会解,所以决定以教材为重点,先用一个课时上列表法,再用一个课时上画图法和假设法,用两个课时上完。如果过中有学生用到方程解的,也给予肯定。

  上课之前,我们都觉得学生对于画图法和假设法应该较为容易理解,通过教学后发现,学生对于列表法,特别是对逐一列表法,学生们普遍都能理解掌握,对于跳跃式列表法、取中列表法也有大部份的学生能够灵活运用。反而是假设法,虽然有画图法辅助理解,相差的腿数,为什么要除以鸡兔的腿数差,学生还是难以理解。授完课之后,我们还发现了另外两个更为严重的`问题:一是学生在学了假设法后,觉得假设法比列表法的书写来的简便,更喜欢用假设法,而他们又没能理解透彻这种方法,常常用相差的腿数除以鸡腿数或兔腿数,导致解题错误。二是学生虽然懂得用列表法解决真正的鸡兔同笼问题,一但换成另一个内容的类似鸡兔同笼的问题时,学生却不懂填表头。如:(1)新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各有几个?(2)小白兔拔萝卜,雨天一天拔12个,晴天一天拔20个,小白兔共拔了112个萝卜,平均每天拔14个,小白兔拔萝卜有几天是雨天几天是晴天?

  出现这些问题,我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把列表法与表头的填写方法作为重点来上,其他的方法根据学生的认知水平适当处理。

  鸡兔同笼教学反思 10

  在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。师生共同经历了三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?

  虽然这只是一个简单操作活动,但是,在画图的'过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。

  就本堂课而言,还存在以下问题;

  1 、在创设完情景引导学生用什么方法解这个问题时,学生的一些回答,没有预想到。如有学生认为可以通过数鸡和兔的头或一只只放出来数从而知道鸡兔各有几只。说明在情景创设上有漏洞,需进一步完善。

  2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

  3 、没有出示一个完整的表格,在引导学生用简便方法调整假设时的讲解上不直观,只有部分优生能理解。

  4 、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。

  鸡兔同笼教学反思 11

  课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路,这也是我校推广的三环六部教学法。

  师生共同经历了三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?引导学生画图的方法去试:先画20个圆圈表示20个头,再在每个动物下面画两条腿,20只动物只用了40条腿,还多出14条腿,把剩下的14条腿要给其中的几只动物添上呢?(7只动物分别添2条腿)。这7只就是兔子,另外的13只就是鸡。这时候有学生问能把动物都看成是4条腿的吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。

  虽然这只是一个简单操作活动,但是,在画图的.过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。

  就本堂课而言,还存在以下问题;

  1、由于注重模式,合作交流,教师点拨这一块不够透彻,没有关注到差生。

  2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

  3 、没有出示一个完整的表格,在引导学生用简便方法调整假设时的讲解上不直观,只有部分优生能理解。

  鸡兔同笼教学反思 12

  鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:

  一、关注每位孩子的成长是成功的前提

  鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。

  二、关注课堂的互动、生成是取得良好效果的基础

  课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。

  三、关注数学思想的传承是达成目标的保障

  解决鸡兔同笼问题的`过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。

  本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。

  鸡兔同笼教学反思 13

  通过课前对学生的调查,我发现有一部分学生接触过“鸡兔同笼”问题,但多数学生对独立学习“鸡兔同笼”问题存在必须的难度。在采用“先学后教,当堂训练”的课堂教学模式时,我为学生设计了导学案,让学生在尝试,探索,交流合作中体会“鸡兔同笼”问题的基本结构特征,经历用不同的方法解决“鸡兔同笼”问题的过程,初步构成解决此类问题的一般性策略。

  一、学案导学,自主探索

  “鸡兔同笼”向学生带给了现实、搞笑、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,让学生在课前自学,我为学生设计了导学案,辅助学生应用画图法、列表法、假设法、代数法等,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,为课堂上小组合作探究带给素材,难得的是有学生运用了抬腿法来解决这个问题,抬腿法只用了简单的两个式子,但是正如学生所说这也是最难理解的一种方法。学案导学,自主探索,让学生在自学后能真正把所学的数学知识技术应用到生活中实际问题中去,用数学的眼光看待身边的事物,感受数学的价值。

  二、合作交流,主动建构

  在解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,有猜测、列表、假设和方程解。其中假设和列方程解是解决该类问题的一般方法。在设计时,我思考到一部分后进生的实际,安排了画图法作为学生理解假设法的基础。让学生在课前自己尝试着画一画,课中在教师的引导下分析画图法的思路,进而帮忙同学们理解假设法中的难点,让学生能清楚的表达用假设法解决鸡兔同笼问题的思考过程。在分析列表法的过程中,有意让学去观察列表法中的哪几种状况是不可能出现的,进而将列表法与假设法相关联起来。可能有一部分学生会选取用列方程的方法来解决该类问题,因为用方程解这类问题的相等关系是十分简单和清晰的,在设鸡或兔的其中一个只数为x,则另一个只数能够用含x的式子来表示,这个过程实际上也运用了假设法。然后根据鸡、兔的只数与脚的总数的关系列出方程。在方程列好后,能对解答过程进行比较,让学生明白设脚数多的这个量为x,能使解答过程变的简便。

  在实际课堂教学过程中,学生隐约感觉到了这些方法间的联系——假设法,只是学生不敢说出来,在老师的引导下,他们才说出了这些方法间的联系,比较难得的是学生基本能说出各种方法的优缺,懂得用自己真正理解的方法去解答。

  三、当堂训练,拓展延伸

  在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。学生只要懂了,在后面的问题中,他自然而然会用到假设和方程的方法。在当堂训练中我安排了3个层次的资料。第一个层次有数量关系分析辅助,第二个层“鸡兔同笼”问题的基本型,第三个层次是选做题。让学生解决不同难度层次的问题能够检验学生对“鸡兔同笼”问题解决方法的掌握程度。这样的设计能够使潜能生不至于由于问题太难而束手无策,也不会使优等生因为问题太易而简单地套用方法。

  在实际操作过程中,这也是本课时最大的遗憾,不是练习的设计有问题,而是课堂教学资料太多,以致教学时间不足,使得练习的时间没能得到保证。

  本节课的成功之处:

  一、注重解题策略的多样

  教学中,我引导学生从多角度思考问题,运用了画图、列表、假设、代数等多种方法解决问题,促进学生数学思维潜力的'发展。

  二、注重数学思想的渗透

  我在引导学生运用多种方法解决问题所采用的策略中,有意识的渗透了数学思想。如:将“鸡兔同笼”的原题数据改小中渗透了化繁为简思想,“列表”的策略中便渗透了变化和函数思想,“算术法”的策略中渗透了假设思想,“方程”的策略中渗透了代数思想等等。

  三、注重学生思维的培养

  在导学案中,我让学生依次经历画图、列表、假设、方程这四种解决问题的方法,并注重了这些方法之间的联系和层次,有意识的对学生进行了思维培养。

  四、注重数学文化的培养

  教学中,我把《孙子算经》的原题和特殊解法搬到课堂中来,尤其是后面把腿的只数减少一半后,这都是一种数学文化在现代课堂当中的一种深刻地体现!更使他们感到学数学不是枯燥乏味的,而是风趣幽默、有情搞笑的一门学科。

  鸡兔同笼教学反思 14

  本节课通过创设生动的问题情境,让学生投入到解决问题的实践活动中去,自己探究,经历数学学习的全过程,从而体会假设的数学思想的应用与解决问题的关系。在学习中我注重鼓励每一个学生参与学习过程,用适合他们的方法解决问题,同时也体验解决问题的'不同方法。

  “鸡兔同笼”以前是属于奥数类型的题目,如今编入教材,对学生尤其是基础不好的学生来说有一定的难度,特别是使用假设法解答时,学生理解起来很难,为此我先采用列表法来帮助学生理解,把抽象的知识直观化,然后再引入假设法。对于理解能力较差的学生来说,列表法数据较大,假设法又不易理解,所以我也将抬脚法引入课堂,希望能够为学生提供解决问题的多种思路。

  对于本节课的学习,部分学生已经在课外辅导班学习过了,课堂上这些学生的积极性很高,也能够深刻理解鸡兔同笼的意义,但这就造成了个别程度较差的学生偷懒现象,所以在接下来的练习课上要更多的关注那些做题速度较慢、思维不清晰的学生。

  鸡兔同笼教学反思 15

  通过研读教材和教学用书,我知道鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。

  这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”

  “如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:

  1、体现了解决问题策略的多样化与优化

  鸡兔同笼问题作为六年级数学广角的.内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。

  2、注重了数学思想、数学文化的传承

  “鸡兔同笼”是我国民间广为流传的数学趣题,教学中,我从该趣题引入,到解决该趣题,到感悟古人解决该类问题的方法,揭去了它令人生畏的奥数面纱,还其生动有趣的一面。通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。

  3、形成了假设的数学思想

  课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。

  4、构建了该类问题的数学模型

  在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。

  鸡兔同笼教学反思 16

  1、教学目标的定位

  我把“鸡兔同笼”这个内容划分为两个课时,本节课为第一个课时,在本节课中重点研究解决问题的一般策略——列表。我想通过本节课列表发现的规律为探索新策略奠定一定的基础。在教学过程中,我给学生充分的时间他们经历列表、尝试和不断调整的过程,从中对于列表策略有所体会。学生在这个过程中也出现了多种列表方法,对于多种列表方法引导学生对方法进行优化,从而达到能灵活运用列表解决鸡兔同笼问题。

  教学中我补充了其他的解法,但是却分散了学生的注意力,影响了学生对列表方法这一常用方法的掌握。这是本节课的遗憾之处。

  2、凸现学习价值

  我觉得学习要让学生感兴趣地去学,发自内心的想去学,觉得学习是有用的。而鸡兔同笼问题来于生活。但它高与生活,它需要用一些数学策略去解决,而学习策略以后用来解决生活中的问题。因此在课堂小结时我放手让学生对生活中类似于鸡兔同笼问题的`举例,让学生体会到现实生活中此类问题是广泛存在的。进而凸显了本节课的价值。

  3、关注结果,也关注过程

  结果是比较直接的,容易被大家重视,而过程也是不可忽视的。我们不仅要关注结果同时也需要关注过程。在解题的过程中学生的思维是一大亮点,有些学生想法很有创意但算错了,这样的学生我们应该给予表扬和肯定。

  本节课总的来说把我自己定的目标是完成了,但是还有许多值得思考的问题。比如说如何把北师大版的教材和人教版的教材进行结合,让学生更容易理解,展示自己的机会更多,使不同思维水平的学生对于这类问题真正巩固

  鸡兔同笼教学反思 17

  “鸡兔同笼”问题是用假设法解题的典型问题,对于有些学生比较难以理解,同时不同的学生喜欢的方法也可能有所不同,所以本设计强调让学生多角度地思考,尝试用不同的方法去解决“鸡兔同笼”问题,并且在解决问题中,让学生经历“猜测——列表——假设”的过程,培养学生的逻辑思维能力。这节课注重了以下几点:

  一、注重通过生生互动和人境互动帮助理解解决问题的思路

  “鸡兔同笼”问题属于一类较难理解的应用题,有些学生通过独立思考、探究并不一定能找出正确方法和答案,这就需要借助外在的帮助,学生与学生之间的`互动让学生接受起来更容易、更方便,让会的孩子去帮助不会的孩子学会不但是一个知识的传输过程,也是一个思维碰撞、情感交流的过程,不会的孩子通过帮助不但学会了新知识,还学会了其他学生良好的思维习惯,增进了他们的友谊。人境互动在本节课中也起到了相当重要作用,比如说学生想象兔子变成鸡的场景、用手比划模仿鸡和兔、在脑海中形成印象、画图理解,让学生身临其境,体验、感受了鸡和兔的脚具体是怎么变化的,为什么会那样变化,为理解假设法打下了坚实基础。

  二、注重数学思想的渗透和逻辑推理能力的培养。

  本设计通过多维互动突出了用假设法解决“鸡兔同笼”问题,同时还渗透了化繁为简、猜测、尝试、列表法、数形结合等数学思想,给数学课堂带来了生机和活力,让学生感受到数学的无穷奥妙和变幻万千,同时通过对解题思路的逐步引导,让学生学会推理,学生思维能力得到了提升。

  三、注重数学文化的传承。

  “鸡兔同笼”问题是《孙子算经》中一道数学名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把“数学文化”和《孙子算经》及其中关于鸡兔同笼问题的原题,用课件生动地呈现于课堂,极大地激发和调动了学生的探究兴趣,同时也传承和弘扬了经典的数学文化,让学生感受到中国古代数学的先进,增强了民族自豪感。

  经过几次的磨课和评讲,我也感受到自己在授课中的一些不足,比如说课堂应变能力需要提高,细节上的处理做的不够等等,这些都需要不断努力改进。在这几个星期的时间里,从开始到结束,都是师校长、贾书记、张主任、唐主任和师父朱老师等领导和优秀教师在不断帮我修改、观课、评课、磨课,正是有了她们的悉心指导和帮助才有了我今天的进步,她们认真、细心、专注的态度让我由衷敬佩,这节课给我最大的收获就是端正态度,认真踏实、一丝不苟地去准备并上好每节课。

  鸡兔同笼教学反思 18

  虽然课已经上完,同课异构的教研活动也已经结束,但是我知道我们的教学工作并没有结束,我不能停下前进的脚步,是应该静下心来,好好地自我反思、总结的时候了。

  一、对教材的分析要全面、到位,把握内在联系,分清主次轻重。

  从一开始对教材的理解,就让我对本课的教学倍感压力,总有个疑惑:有部分学生已经能理解并解释应用假设法来解决问题了,为什么北师大版的教材却不同人教版的教材一样,提倡教给学生运用假设法、画图法、金鸡独立法、代数法、列表法……等多种方法解题,甚至是要求教师除了列表法以外的方法都不宜补充教学,以免干扰学生思绪。难道教学不应该从学生已有的知识经验水平出发?学生已经掌握的我们还要给硬逼回原点,从零开始吗?

  这一连串的疑惑多亏了学校领导和老师们的一语道破,真是一语惊醒梦中人啊!让我重新细细地、全面地解读教材,才明白其实假设法、画图法等与列表法并不是孤立的、互不相干的几部分,而恰恰相反的,假设法、画图法与列表法一样都是在应用假设的数学思想,它们是相互关联的。教材将这一经典、传统的题目“鸡兔同笼”选编为“尝试与猜测”一节,其目的是借助“鸡兔同笼”这个问题作为载体,让学生初步获得一些数学活动的经验,引导学生对一些日常生活中的现象的观察与思考,从而发现一些特殊的规律,体会解决问题的一般策略——列表,即逐一列表法、跳跃列表法和取中列表法。

  二、注重思维能力的培养和数学思想的渗透。

  让学生在参与观察、猜想、验证、综合实践等数学活动中,发展合情推理和演绎推理能力。用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到画图法、假设法,学生的'思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

  教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”、“画图法”等解决问题,渗透了假设的思想和方法。这些对于学生而言,无疑奠定了可持续发展的坚实基础。

  三、注重数学文化的传承。

  鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把“数学文化”和《孙子算经》及其中关于鸡兔同笼问题的原题,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味,也让“数学味”萦绕课堂,贯穿课堂始终。

  四、真正让学生亲身经历列表、尝试和不断调整的过程,让不同的学生学有不同的数学。

  由于学生原有认知水平的不同,存在较大的差异。所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出的方法有序且不遗漏。再引导学生从上往下看、从下往上看、从左往右看发现规律,体会鸡兔只数变化之间的置换关系。等待学生充分掌握规律,已经跃跃欲试了,教师再指引学生运用自己发现的变化规律在表格中调整验证过程,进行二次调整,快一点找到答案?学生不但可以应用跳跃列表法、取中列表法,来调整过程,而且部分学生已能把跳跃和取中的方法相结合起来列表解决问题。最后引导学生对解题技巧进行归纳与总结:做任何题目的时候,都要先认真思考、分析,根据题目的条件,选择适当的方法,找到解决问题的小窍门!

  这样学生在具体的解决问题过程中,他们根据自己的经验,逐步探索不同的方法,找到解决问题的策略;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。本来只要求从3道题中任选1道题进行解答,没想到一会功夫,已经一大部分学生把3道题都解答完了,就因为他们在自己亲身经历的调整过程中学会了将取中和跳跃的方法相结合,所以速度之快。这同时也体现了不同的学生在同一节课中都有不同程度的提高,不同的学生学有不同的数学。

  五、教师要走进课堂,走进学生的心里,注意捕捉并利用课堂生成的新资源。

  这是我教学这一课之前感到有困难的,也是我教学时做得不够到位的地方。比如:学生猜出鸡兔各几只后,有个别学生就开始用口算进行验证。此时,教师的引导让学生感觉需要列表的必要性不够明确。

  鸡兔同笼教学反思 19

  在教学《鸡兔同笼》的过程中,主要体现以下四个特点:

  1、抓住学生认知起点设计教学。

  课前调查,我发现班级中很多学生在中年级就已经通过作智力题,接触过鸡兔同笼问题,有的会用算术法解决这类问题,有些学生还会用方程解决。这样,学生之间的层次是不一致的。如果这节课只是一味地教学课本上要求的列表法,学生会觉得很乏味。于是,我决定在这节课进行多种方法的融会贯通。为了更好地达到课堂高效率,课前我布置学生预习,了解有关鸡兔同笼问题的多种解题方法。这样,即使是没有接触过鸡兔同笼问题的学生,也不会在课堂上感到措不及手。其实,多种解题方法的思路是有密切联系的,举一可以反三,从课堂效果来看,学生掌握的还是不错的。多种数学思想、方法的渗透,提高了学生的解题能力。本节课学生不仅学会了基本的画图、列表这两种解决问题的方法,还学会了假设、折半、金鸡独立、兔子起立等巧妙的解决问题的方法。受到了多种数学思想方法的熏陶。培养了孩子解决问题的能力,提高了孩子的思维水平。

  2、以教师为主导、学生为主体。

  新课程要求我们给学生创设一个开放、自由的空间,让学生真正成为课堂的主人。但是,没有教师正确引导的课堂未必是高效率的,因此,课堂上我把学生分为四人小组合作探究,但是给每个组下发的探究思考题是有一定指向性的。因为,如果没有指向性,学生所想出的方法未必会多姿多彩。当然,课堂上,我允许学生用自己喜欢的方法解决问题,并给学生搭建一个展示的'舞台,充分张扬学生的个性。才使课堂出现争先恐后、积极主动参与解决问题的场景。

  3、师生交流充分。

  课堂上,学生各自发表自己的意见,倾听别人的意见。互相评价,取长补短。渠道畅通,课堂是流动的,有生命的,学生的交流如春雨滋润着孩子的心灵,使学生的思维在交流中不断提升。

  4、教学设计重点难点突出。

  课堂上,虽然解决问题的方法很多,但是画图法、列表法是解决问题的基本方法。在课堂上教师重点让学生展示了这两种方法,并进行了师生质疑,使基本方法人人都会,其他方法作为开阔学生的思路,简化处理。使不同的学生学不同的数学,不同水平的孩子在课堂上都有所收获。

  5、存在问题

  好多学生由于历史的原因,到六年级数学还没有入门,实际能力只有小学2、3年级的程度,根本无法参与到数学学习活动中来,这是教学最大的难点,后期走待改进教学方法。

  鸡兔同笼教学反思 20

  “鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。本节课主要是借助这个题材,培养学生从多角度思考,运用多种方法解决问题的能力;重在研究解决问题的方法和策略上,并在合作交流过程中,积累解决问题的经验,掌握方法,并灵活运用这些知识解决生活中类似“鸡兔同笼”的问题。所以在设计教学过程时我力求渗透以下几点:

  一、在放手探究中体会解题策略

  学生刚刚接触“鸡兔同笼”问题时,要列式计算往往感到困难,所以我设计了几种由浅入深的方案,先通过儿歌引入算出一只兔和一只鸡的头数和脚数,再逐步增加鸡和兔的只数,学生用自己的生活经验可以口算出总头数和总脚数;然后出示已知头数和脚数求鸡和兔的只数。在放手探究时提供画图、列表、倒推、解方程等等方法,数形结合使学生理解并运用这些方法解决问题。这样不仅关注解决问题的结果,更关注知识的生成;不仅关注优秀学生,更关注全体学生的全面发展。从学习效果来看,确实让全体学生在数学上得到了不同的发展:因为层次不同的孩子选择了适合自己的不同方法,都得到了正确答案。

  二、在策略多样化中体验最优方法

  学生尝试应用画图法、列表法、假设法和代数法等来解决问题,他们在探究的过程中,根据自己的经验,尝试不同的方法,找到了解决问题的策略。但是让学生认识、理解、运用假设法是这节课的教学重点,也是教学难点。特别是假设全是鸡为什么求出来会是兔,学生很难弄懂。为此,在新课前我用兔子起立学鸡的故事进行铺垫,让学生明确,把一只兔当成了鸡就会少2只脚,用总共少的只数除以每只少的只数就是兔子的只数。尽管假设法的思路学生刚开始不太接受,但是孩子们体验到当数量很多的时候,画图和列表的方法就行不通了,所以假设法就更具有普遍性,这样就为以后的数学学习提供了一种非常重要的数学思想。所以尽管方法很多,假设法和列方程相对更优。

  三、在古题新解中建立数学模式

  其实在生活中,鸡兔同笼的现象是及其少见的',我们也没有必要数出它们的头和脚,算出只数。那么这类题型在现实生活中有哪些应用,它的解题方法给我们哪些启示呢?这些才是这节课要渗透的思想。为此我摘录了古今中外很多类

  似鸡兔同笼的问题,让学生一一分析。找到这类题目的共同特征,得出共性,总结方法。因此鸡兔同笼不仅仅代表鸡兔同笼,它反映了一种数学模式的建立和数学思想的渗透。学习数学只有在个案的探索中找到了规律性的结论和方法,才能学到有价值的数学。

  不过由于一节课时间有限,不可能灵活掌握所有类型,所以有的学生还是有模仿做题的倾向,遇到变式练习时不能正确解决。

【鸡兔同笼教学反思】相关文章:

鸡兔同笼教学反思02-19

鸡兔同笼教学反思07-23

《鸡兔同笼》教学反思10-15

鸡兔同笼的教学反思08-22

鸡兔同笼教学反思04-03

鸡兔同笼教学反思07-14

《鸡兔同笼》教学反思10-07

《鸡兔同笼》数学教学反思08-08

下册鸡兔同笼教学反思05-21

《鸡兔同笼》数学教学反思02-08