实用文档>《求组合图形的面积一例》教案

《求组合图形的面积一例》教案

时间:2024-09-02 23:14:45

《求组合图形的面积一例》教案

《求组合图形的面积一例》教案

《求组合图形的面积一例》教案

  “创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力。”培养学生的创新能力是素质教育的重要目标,也是新课程改革的核心问题之一。我们在教学中,要为学生提供充分的时间和空间,鼓励学生用多种方法、多种思路解决数学问题,促进学生创新能力的提高。

  案例:求组合图形的面积

  导入新课后,老师出示例题:

  求下面组合图形的面积?(单位:厘米)

  师:分四人小组互相讨论,再派代表发言。(学生大约讨论六分钟左右进行反馈)

  师:大家来汇报一下,你是怎样算的?

  生1:我是把它分成一个长方形和一个梯形来算的。先算出长方形的面积是48平方厘米,梯形的面积是40平方厘米,再把它们加起来,结果是88平方厘米。

  评:这位同学的回答思路清楚、语言精炼,同时也很清楚地把他的分析过程“怎样分”展示出来,使学生一看便一目了然。

  生2:我是把它分成一个梯形和一个三角形来算的。梯形的面积是(6+10)×8÷2=64(平方厘米),三角形的面积是12×(10-6)÷2=24(平方厘米),再把两个面积加起来也是88平方厘米。

  评:这位同学的回答相当不错,思路也很清楚,经他这样把原来的一个图形分成两个我们熟悉的图形的这种计算方法,使学生看了后也能掌握。

  生3:我 先算长方形的面积是80平方厘米,三角形的面积是8平方厘米,再把两个面积加起来也是88平方厘米。

  评:这位同学又有了新的计算方法,思路也很清楚,也是一种最佳的计算方法,分成的方法一看就能掌握。

  生4:可以补上一个梯形,使它成为一个长方形,再用长方形的面积减去梯形的面积就可以了。如图:

  生5:还可以把它分成一个长方形和两个三角形来计算。先算出长方形的面积是48平方厘米,再算出两个三角形的面积分别是16平方厘米和24平方厘米,最后把这三个面积加起来是88平方厘米。

  这一例题的教学就这样在“创新”中开始,又在“创新”中结束了,从整个过程来看,一开始课堂上可以明显地观察到不少学生一脸疑惑,渐渐地注意力出现涣散,到最后一种方法也不会的学生估计不存在,如有也是个别的。课堂教学面对的是一个班级的学生,他们的知识、智力水平存在差异。在初次接触组合图形,没有进行引导的情况下,让学生自行探究,获得成功的只是部分同学。在汇报解法时,要让学生充分展示解题思路、探究历程,引导全班同学进行分析、认同,进一步明确思路。有了多种方法,还应通过比较,懂得各种方法的繁简优劣。

  随着新课程改革的不断推向高潮,对如何实施新理念,弥补传统数学的缺陷,解决传统数学教学问题,发扬传统数学教学的优点需要我们不断地去探索、去实践。“陷于生活、方向不明、放任自流”绝不应该成为新课程理念的本意,“联系实际、明确目标、自主探究、体验成功”菜是我们要追求的目标。

【《求组合图形的面积一例》教案】相关文章:

小学五年级上册《组合图形的面积》教案(精选6篇)10-13

《比较图形的面积》的教学反思(精选15篇)11-07

《认识立体图形》教案03-20

图形的变换课题教案(精选14篇)08-28

《面积单位》教学设计03-09

六年级上册《圆的面积》教案(精选10篇)12-07

图形的旋转教学反思(精选18篇)06-08

认识立体图形的教学反思03-20

《周长与面积》教学反思(精选10篇)04-21

图形与测量的教学反思(通用8篇)06-12

用户协议